
Administrator’s Guide 4.5.0

Administrator’s Guide 4.5.0

InfoFabrik GmbH, 2023

http://www.infofabrik.de/
http://www.reportserver.net/

Copyright 2007 - 2023 InfoFabrik GmbH. All rights reserved.

This document is protected by copyright. It may not be distributed or reproduced in whole or in
part for any purpose without written permission of InfoFabrik GmbH. The information included in
this publication can be changed at any time without prior notice.

All rights reserved.

Contents

Contents i

1 Preamble 3

2 First Steps 7
2.1 Configuration and installation . 7
2.2 Login . 7
2.3 Creating a datasource . 9
2.4 Creating your First Report . 9
2.5 Importing a Graphical Report . 10
2.6 Creating users . 11
2.7 Terminal and FileServer . 12

3 User and Permission Management 15
3.1 The User Tree . 15
3.2 Permission Management . 16

4 Datasources 23
4.1 Relational Databases . 23
4.2 Amazon Redshift . 25
4.3 Google BigQuery . 25
4.4 Teradata . 27
4.5 Storage of Database Passwords . 27
4.6 Datasource Pool . 27
4.7 CSV Lists . 27
4.8 Script datasources . 29
4.9 BIRT Report datasource . 30
4.10 Mondrian Datasource . 30
4.11 Datasource Bundle . 32
4.12 Configuration of a Standard Datasource . 33

5 Datasinks 35
5.1 Email - SMTP . 36

i

Contents

5.2 Table datasinks . 37
5.3 SFTP . 38
5.4 FTPS . 38
5.5 FTP . 39
5.6 Samba - SMB/CIFS . 39
5.7 Amazon S3 . 39
5.8 SCP . 40
5.9 Local Filesystem . 40
5.10 Printer Datasinks . 41
5.11 Script Datasinks . 41
5.12 OAuth2-authenticated datasinks . 41
5.13 Dropbox . 42
5.14 OneDrive - SharePoint (O365) . 42
5.15 Google Drive . 43
5.16 Box . 43

6 File System 47
6.1 Configuration Files . 48
6.2 Filing of Scripts . 48
6.3 Accessing Resources by URL . 48

7 Report Management 51
7.1 Fundamentals . 52
7.2 The Dynamic List . 54
7.3 Working with Parameters . 64
7.4 JasperReports . 80
7.5 Eclipse Birt . 81
7.6 SAP Crystal Reports . 82
7.7 Saiku / Mondrian Reports . 84
7.8 JXLS Reports . 85
7.9 Script Reports . 88
7.10 Grid Editor Reports . 91
7.11 Executing Reports via the URL . 106
7.12 Report Properties . 110
7.13 Report Metadata . 111
7.14 Drill Down Reports . 112

8 Global Constants 115

9 User Variables 117
9.1 Defining User Variables . 117
9.2 Allocating User Variables . 118
9.3 Using User Variables in Reports . 118

10 Import and Export 121
10.1 Exporting . 121
10.2 Importing . 121

ii

Contents

11 Scheduling of Reports 125
11.1 Technical Backgrounds to Scheduler Jobs . 126
11.2 Filtering by the Status of a Job . 126
11.3 Notifications . 127
11.4 Terminal Commands . 127
11.5 Conditional Scheduling . 127
11.6 Creating and Using a Condition Report . 127
11.7 Predefined Conditions . 129
11.8 Defining a Simple Condition via Scripting . 129

12 Theming 133

13 Terminal 139
13.1 Using the Terminal . 139
13.2 The Virtual File System . 140
13.3 Assigning Aliases . 142
13.4 Scripts . 143
13.5 Object Resolver . 143

14 ReportServer Scripting 149
14.1 A first Hello World . 150
14.2 How to Handle Errors . 151
14.3 Administrative Scripts . 153
14.4 Changing the Data Model . 155
14.5 Enhancing ReportServer with Scripts . 156
14.6 Scheduling of Scripts . 157
14.7 Accessing Scripts by URL . 157

15 Integrating ReportServer with an Active Directory using LDAP 161
15.1 Synchronizing Users . 161
15.2 Authenticating Users . 162
15.3 Possible Improvements . 164

16 Terminal Operators 167
16.1 Write-into-file operators . 167
16.2 Write-into-datasink operator . 167

17 Terminal Commands 169
17.1 birt . 169
17.2 cat . 169
17.3 cd . 169
17.4 clearInternalDbCache . 169
17.5 clearInternalScriptCache . 169
17.6 columnsExist . 170
17.7 columnsMetadata . 170
17.8 config . 171
17.9 connPoolStats . 171
17.10copyTableContents . 172

iii

Contents

17.11cp . 173
17.12createTextFile . 173
17.13datasourceMetadata . 174
17.14deployReport . 174
17.15desc . 175
17.16diffconfigfiles . 175
17.17dirmod . 176
17.18echo . 176
17.19editTextFile . 177
17.20eliza . 177
17.21env . 177
17.22exec . 177
17.23export all . 177
17.24groupmod . 178
17.25haspermission . 178
17.26hello . 179
17.27id . 179
17.28info . 179
17.29import all . 180
17.30kill . 180
17.31ldapfilter . 180
17.32ldapguid . 181
17.33ldapimport . 181
17.34ldapinfo . 181
17.35ldapschema . 181
17.36ldaptest . 183
17.37listlogfiles . 185
17.38listpath . 186
17.39locate . 186
17.40ls . 187
17.41meminfo . 187
17.42mkdir . 187
17.43mv . 187
17.44onedrive . 188
17.45pkg . 188
17.46ps . 188
17.47pwd . 188
17.48rcondition . 188
17.49reportmod . 189
17.50rev . 189
17.51rm . 189
17.52scheduleScript . 190
17.53scheduler . 190
17.54sql . 191
17.55tableExists . 191
17.56ssltest . 191
17.57teamspacemod . 192

iv

Contents

17.58unzip . 192
17.59updateAlias . 192
17.60updatedb . 193
17.61usermod . 193
17.62variantTest . 193
17.63viewlogfile . 193
17.64xslt . 194
17.65zip . 194

18 Dashboards and Dadgets 197
18.1 Static HTML Dadgets . 198
18.2 Embedding Dashboards via the URL . 200

19 SFTP Server 203

20 Maintenance 205
20.1 Testing User Specific Settings (su) . 205
20.2 Logging . 205
20.3 Recovering of Objects . 206

A Expression Language 209

B Demo Data 213

1

Chapter 1

Preamble

Business Intelligence

Business Intelligence (BI) describes the ability to jointly analyze all of a company’s data, distilling
relevant information to be used to foster better business decisions. The foundation of any BI
solution is the careful preprocessing of existing data, for example, in a data warehouse.

ReportServer acts as the gateway between end-users and the collected data, allowing users to
efficiently access and analyze the available data. From camera-ready evaluations to fine-grained
ad-hoc reporting; ReportServer provides you with the tools to support your daily work.

Target Audience

This document is designed for future administrators of ReportServer.

Separate manuals and instructions illustrate the various aspects of ReportServer.

ReportServer Configuration Guide: Describes the installation of ReportServer as well as the basic
configuration options.

ReportServer User Guide: The user guide describes ReportServer from the point of view of the
ultimate user. It includes an in-depth coverage of dynamic lists (ReportServer’s adhoc reporting
solution), execution of reports, scheduling of reports, and much more.

ReportServer Administrator Guide: The administrator guide describes ReportServer from the
point of view of administrators that are tasked with maintaining the daily operation of the
reporting platform including the development of reports, managing users and permissions,
monitoring the system state, and much more.

ReportServer Scripting Guide: The ReportServer scripting guide covers the scripting capabilities
of ReportServer which can be used for building complex reports as well as for extending
the functionality of ReportServer or performing critical maintenance tasks. It extends the
introduction to these topics given in the administrator guide.

3

1. Preamble

System State

We proceed on the assumption that the basic configuration has been completed as de- scribed in
the installation and configuration instructions. All examples given in this book are based on the
available demo data.

ReportServer Demo Content

The demo data used in this book are part of the standard delivery scope of ReportServer and can
be automatically loaded when starting the system. Additionally we provide a demo content package
that preconfigures ReportServer for a fictitious company called “1 to 87”. This includes setting up
various users including permissions, TeamSpaces where these users have access and can collaborate
as well as a number of demo reports.

Loading the demo warehouse. ReportServer comes with the option to install a demo database,
which is the base for the demo report shipped with ReportServer. The demo data will be installed in
an internal database (we will later see the significance of this internal database). To load the demo
data on startup change the configuration file /etc/datasources/internaldb.cf to include the
tag <installdemodata>true</installdemodata>. You will find this configuration file, if you log
into ReportServer as root, go to the administration module.1 For this choose Administration from
the module bar at the top of the screen, and then choose File Server from the aspects on the left.
Navigate to file /etc/datasources/internaldb.cf in the tree. To change the file choose the
tab edit on the bottom. A sample configuration could, for example, look like:

<configuration>
 <internaldb>
 <location>dbtmp</location>
 <encryption>
 <disable>false</disable>
 <password>SecretPassphrase</password>
 </encryption>
 <installdemodata>true</installdemodata>
 </internaldb>
</configuration>

Note that this change will only take effect after a restart of ReportServer.

Loading the demo content. To install the demo content, log into ReportServer as root.After
logging in, press CTRL+ALT+T to open the terminal. The terminal is a powerful tool to administer
ReportServer. We will see various use cases for it throughout this manual. Type

pkg list

and confirm the command by pressing enter. You should see

baseconfig-RS2.1.1-5517-2013-11-06-18-02-40.zip
demobuilder-RS2.1.1-5517-2013-11-06-18-02-40.zip
reportserver$

1Look at the next section “First Steps” for an introduction to ReportServer and a guide to logging in, the user
interface and the various interfaces.

4

The example content is supplied as a ReportServer package, which is basically a groovy script
with some additional files. The pkg list terminal command lists all the available packages. In
the example above, there were two packages. The baseconfig package is automatically installed
whenever you conduct a fresh install of ReportServer. It installs the default configuration files in the
etc directory of ReportServer’s internal file server. The demobuilder package contains the example
data we are going to install. The precise filename may differ from the one pictured here, depending
on your ReportServer version.

Warning, the installation of the demo content, will remove any existing content. To install the
example data use the following command:

pkg install -d <packagename>

where packagename denotes the name of the package as returned by the pkg list command.
Note that you don’t actually have to type the whole name, but can only enter the first few characters
and press the tab-key to have ReportServer autocomplete the filename for you. After you issued
the pkg install command ReportServer unzips and installs the example data. This might take a
minute or two, but after a while you will be presented with the ok-confirmation. If you reload your
browser you can now use the example data.

5

Chapter 2

First Steps

This section will provide you with a first impression of how an administrator will work with
ReportServer. On the basis of the demo data provided we will guide you step by step through the
various sections of the Administration interface. We will use examples to explain the basic concepts
that you will meet throughout ReportServer.

2.1 Configuration and installation

You will find a detailed description in the configuration and installation instructions in the freely
available ReportServer configuration guide. As we will frequently refer to configuration files and
options, we list below the most important locations where to configure ReportServer:

reportserver.properties To be found in the directory WEB-INF/classes; it includes basic config-
uration settings which have to be rarely adapted. This applies to login control settings, or
passwords to encrypt sensitive data, etc.

persistence.xml To be found in the directory WEB-INF/classes/META-INF, it includes the config-
uration of the database connection.

All further settings will be made within ReportServer. ReportServer has an internal file system
which you find in the administration module. There, in the spirit of UNIX systems, you will find the
configuration files in the folder /etc. For further information on the configuration of ReportServer
please refer to the configuration manual.

2.2 Login

Use your web browser and open the ReportServer home page in order to log into ReportServer.
By default you will find it under the URL http://SERVERNAME:PORT/reportserver/. If you
are on the server where the program is installed, the address is normally http://127.0.0.1:
8080/reportserver/. In order to log into ReportServer for the first time, it must be preconfigured
so that users can log-in with their user name and password (this is the default setup). A description
of the various authentication procedures is given in the ReportServer configuration guide. Now, log
in by entering the user name “root” and password “root”.

7

http://SERVERNAME:PORT/reportserver/
http://127.0.0.1:8080/reportserver/
http://127.0.0.1:8080/reportserver/

2. First Steps

After login you get to the Dashboard module. The user interface is structured as follows: At the top
screen margin you will find the module bar. Here you can switch between the different ReportServer
modules. At the right hand side you will find the option to log off from the system as well as your
user profile (click on your name) and global search. For further information on your profile and
ReportServer’s search functionality, please refer to the ReportServer user guide. As root you have
access to the following modules:

Dashboard The dashboard enables the user to get important information at a glance. For further
information, please refer to the ReportServer user guide as well as to the Dashboard section.

TeamSpace The TeamSpace module enables users or user groups to organize their individual work
areas. The users may attend to nearly all of their settings themselves. For further information
on TeamSpace, please refer to ReportServer user guide.

Scheduler The Scheduler module lists all scheduled reports. For further information on the
Scheduler module, please refer to section Scheduling of reports as well as to the ReportServer
user guide.

Administration The administration module provides access to a collection of various sub modules
used by administrators. The administration module is split into the following sub modules.

User management Here users and user groups may be maintained.

Report management Enables to manage report objects.

Dashboard library Dadgets (abbreviation for Dashboard Gadget) are used by the users to
assemble their dashboard. In the dashboard library, administrators can provide pre-
assembled dadgets which the users may simply select.

File system ReportServer uses the File system in many different ways.You will find here
common configuration files or ReportServer scripts. But you also can provide resources
(e.g. pictures) for reports.

Datasources This section enables to manage database connections which may be used as a
basis for reports.

Global constants Global constants may be used in reports to swap out configuration param-
eters so that they can be managed centrally.

Import The import module enables to import ReportServer objects that had been exported
before.

Permission management The permission management defines the access permissions for
the varying ReportServer modules/functions.

Scheduler As compared to the Scheduler main module, the Administration module provides
insight into any scheduler job made by the users. Now we are going to get acquainted
with ReportServer in a quick resumé. We try to introduce important concepts and
functions by presenting examples. If you haven’t done so, you should now load the demo
data. For the upcoming introduction the demo content is not necessary. See Section 1
on page 4.

8

2.3. Creating a datasource

2.3 Creating a datasource

The basic requirement for running reports is the configuration of a datasource. Datasources are
organised hierarchically in a tree structure like many other objects. The ReportServer trees are
organised in a similar way as you may know from files and folders of common file systems. The
hierarchic structure enables you to retain the overview even when dealing with a large number of
objects. In addition, the hierarchic structure enables to map even the most complicated access
rules in a compact and comprehensible manner.

You will work with ReportServer trees just in the same way as you are used to from other
programmes.You will create new objects by using the context menu (right-clicking an object),
and with drag and drop you can move objects. Now, select the datasources section within the
Administration module. Below the Root folder, the folder “internal datasources” should already be
located. Beside the existing folder, create another one: Right click on “Datasource Root” -> Insert
-> Folder. Now, select the newly created folder “unnamed”. In the right part of the window you can
edit the properties of the currently selected object. Rename the folder to “Demo data” and click on
the Apply button.

Now, we will configure a datasource which enables to access the internal demo data. Below the
newly created folder, create then the datasource type “relational database”. Enter “Demo data”
as the name for the new database connection. Select H2 as database type. User name and
password are “demo”. Enter the following JDBC connection URL: jdbc:h2:dbtemp/rsdemodb.
The dbtemp path refers to the directory of the internal database as defined in configuration file
etc/datasources/internaldb.cf in the internal file system of ReportServer. By default this is the
dbtemp directory relative to the ReportServer directory. See the configuration guide on information
on how to change this location.

Apply the chosen settings and run a test whether the connection can be established (“Test connection”
button in the tool bar). Be aware to only test the connection after saving your changes.

2.4 Creating your First Report

In the following we will create a first basic report. To do so, switch to the section Report management
in the Administration module. Here you see that reports are managed in a tree structure as well.
As you did before, create a new folder with the name “demo reports”. The provided demo data
represents a small datamart for the fictitious model-making manufacturer “1 to 87”. You will find
the corresponding database scheme in the appendix. First, we want to create a customer list. For
this purpose the reporting type “dynamic list” is suitable. Below the demo reports folder insert a
report of type “dynamic list”. Rename the report to customer list and select the datasource (click
on the magnifying glass) demo data that you have just created.

The configuration displayed varies with the datasource selected. Relational databases require the
setting of the appropriate SQL statement. We want to create a list showing any and all information
about the customers of the company “1 to 87”. In the demo data the T_AGG_CUSTOMER table has
already been prepared for this. The following statement selects all data records from the table:

SELECT * FROM T_AGG_CUSTOMER

9

jdbc:h2:dbtemp/rsdemodb

2. First Steps

Apply the data and open the report by double clicking on the object in the tree. Now, the screen
that opens should show the report execution area. This section is detailed in the ReportServer
user manual. To get a quick overview of the “1 to 87” customers, select from Select columns all
available columns and then on the left select Preview from the aspects. The first 50 data records
should now display. If you wish to export the complete list, for instance, to an Excel file, select the
button Excel export from the tool bar.

Then close the report by clicking on the button x on the right hand side above the tool bar to return
to the Administration section. Alternatively, select the Administration module from the module bar.

2.5 Importing a Graphical Report

In the next step we want to import a graphical report from the ReportServer sample projects.
Within your ReportServer installation you should find a folder called “pkg”. Within there should be a
file called demobuilder-xx.zip where xx denotes your ReportServer version. Copy that file to a
temporary directory and there unzip the file.You should find a tmp directory containing various files
of the type “export_...zip”.

Now, select the section Import in the Administration module and then click on the Start import
button. Select the file export_birt_sample_reports.zip and click on Submit. In the left part
of the screen the sections Datasources, User management and Report management should display.
This indicates that objects from these sections were exported to the export file. Click on Report
management and select the folder demo reports as the import target. At the bottom click on the
objects tab and select the sales invoice report.

Now switch to Datasources and choose the demo data datasource that you created as default
datasource. For the import it will be entered in the report as datasource. Then at the top, right
click on Finalize import and answer the question whether you want to reset the configuration with
Yes. Now select Cancel job from the tool bar to show ReportServer that no other objects are to
be imported from this file.

Switch back to Report management and open the Demo reports folder. You might need to reload
the tree to see the freshly imported report. For this click the reload button in the tree’s toolbar.
The imported report sales invoice should be located here. Open the report to ensure that the
correct data connection has been set.

If you run the report you will first be directed to the parameters page of the report. Parameters
enable the user to limit the data basis in particular for graphical reports (such as JasperReports or
Eclipse-BIRT reports) according to its needs. However, parameters can be applied for all reports.
For instance, enter 10167 as invoice number (order number) and click on Preview. The report will
run for exactly this invoice number. When you return to the Administration section and select the
sales invoice report, you can view the application of this parameter. Beside the general report
settings you may switch to other aspects by clicking on the tabs at the bottom margin. Select
Parameter management. The report shows the parameter Order Number. If you double click on
the icon of the parameter, a dialogue box opens showing the parameter settings. Close the dialogue
by clicking on the Cancel button.

10

2.6. Creating users

2.6 Creating users

In the following we will create the Report Management user group as well as the jondoe user. So
far you have been working under the user root. You should use this account only in an emergency
case as the user root operates completely isolated from the management of permissions. It is
reasonable to set up user accounts in such a way that the users will always be granted only those
permissions they actually need for their work. In the Administration section now switch to User
management. Like reports, users will be managed in ReportServer in a hierarchic structure. This
enables to easily map, for instance, company hierarchies and to create users with similar or equal
permissions in a common folder (or as we call them organisational unit). Beside hierarchic structuring
you can additionally organise users by means of groups. We will get back to the various structuring
options in more detail in later sections. First create the organisational unit IT and then the user
Jon Doe in a sub-folder with jondoe as user name and password. Jon Doe shall be given the
permissions to create and manage reports. Here it is recommendable to create a group which will
be granted the respective permissions and to add jondoe to this group. To do this, create the
organisational unit roles below the root directory as well as the group Report management. Add
the user Jon Doe to the group either by using the corresponding button, or directly by Drag and
Drop from the user tree (drag the user to the respective member list). Don’t forget to save your
changes by clicking on Apply.

jondoe needs the following permissions to manage reports: He must be able to access ReportServer
and to use the Administration module, there, however, only the Report management. Within
Report management we would like to allocate all rights to him. First, switch to module Permission
management in the Administration section. Various subsections will now display. Now, select the
subsection Administration. In ReportServer permissions are granted based on the ACL security
model (for more information on ACLs, please refer to the section on user management or to
http://de.wikipedia.org/wiki/Access_Control_List). Click on Insert to create a further
permission entry. The entry will be added to the list. To edit the entry, double click on it. From the
mask in column Folk (the receiver of rights) select the group Report management and allocate
reading rights (r). To grant jondoe ReportServer access, go to the subsection ReportServer Access
and create an ACE (an access control entry; a permission entry) that grants jondoe (or the group
Report management) the execute (x) right. Now, when you log off and log on as jondoe, you
will see that he will be allowed to see the Administration section, however, he will have no further
access rights. Therefore, log in again with root and return to Permission management. Select
subsection Report management and here as well add an access right by granting the group Report
management reading access. Now Jon Doe is granted the rights to use the Administration module
and there the Report management sub-module. However, he is lacking any rights with regard to
single report objects. In ReportServer access rights can be granted fine-tuned down to the level of
single objects. As jondoe is to account for the report management, we will assign him the rights so
that he may access all report objects. To do this, go to Report management and select the root
node. Switch to the permissions view of the root object by clicking on the tab below the expanded
view. Add a further permission entry and double click on the newly created entry. The dialogue is
identical to the already known permission dialogue box except for the option inherit. The option
inherit controls the use of permission entries in trees. We wish to assign to jondoe any and all rights
for all objects. To do so, under Folk we select again the group Report management. Keep the
default settings for access type and inherit. In addition, we either set a tick at all rights individually,
or we use the Quick assign and select Full access. If you now sign in as jondoe you should be

11

http://de.wikipedia.org/wiki/Access_Control_List

2. First Steps

granted access to the complete Report section. When you are logged in with the user name root
and you wish to quickly change the user you may also use the SU (switch user) command. You
can do this by using the keyboard shortcut CTRL+L. In the dialogue box popping up select the user
jondoe and click on Submit. The users who may execute the SU command may also be controlled
in the Permission management.

2.7 Terminal and FileServer

Now log off and log in again as the user root. In the last part of the introduction we will
get acquainted with two important Administration tools enabling to perform complex actions to
ReportServer: the Terminal and ReportServer Scripts.

The Terminal follows the familiar Unix terminal and uses various commands to enable the set-up
of a database connection, to move objects or retrieve system information. Open the Terminal
by entering the keyboard shortcut CTRL-ALT-T. A window opens showing a prompt. Enter the
command ls and confirm with ENTER. The ls command shows the objects in the current folder.
All ReportServer trees (e.g. Report management or User management) are accessible from the
Terminal, and are integrated as virtual file systems.

In the following we describe how to create a simple ReportServer script which goes into the internal
File System (a sub-module of the administration module). The File System can be accessed via the
Administration module or via the Terminal. Now enter the command cd fileserver to change the
working directory to the root folder of the file system. The terminal supports the auto-completion
function to enable quicker navigation within the Terminal. You can activate it by pressing the tab
key. If you want to make sure which folder you are currently in, you can use the pwd command.

To verify whether the bin directory exists in FileServer, use the ls command. If it fails to exist
create it by entering the mkdir bin command. With cd bin switch to the newly created directory.
Now, we will create our first ReportServer script. In ReportServer, scripts have manifold tasks and
are written in the programming language Groovy (https://groovy-lang.org/). For working with
ReportServer, scripts are not necessarily required, however, you can use them to accomplish many
special tasks (such as integrating complex datasources or importing of reports from third-party
systems) and small enhancements. In this manual we will time and again meet with scripts. You will
find a detailed introduction in the ReportServer scripting guide. Now create the script hello.groovy
by entering the command createTextFile hello.groovy. A text editor opens. Enter the following
line:

"Hello ReportServer Admin"

Be sure to enter the quotation marks. Click on Submit to save the script. To edit the file use the
command editTextFile hello.groovy. You can run the script with the command exec hello ⤦
 Ç .groovy. You should see the line

Hello ReportServer Admin
reportserver$

on the terminal.

With this we would like to finish our quick ReportServer resumé. Up to this point we have only

12

https://groovy-lang.org/

2.7. Terminal and FileServer

encountered a fractional part of the ReportServer options. In the sections to come we will specifically
outline individual ReportServer sections and discuss them in detail.

13

Chapter 3

User and Permission Management

3.1 The User Tree

Like other object types in ReportServer, users and groups are organized hierarchically in trees. The
user tree can include the following object types.

Users Represent individual users of the system

Groups Arrange users independent of the structure given by the tree

Organisational Units Serve as folders to structure the user tree

New objects will be created in the user tree via the context menu of the folder node. When clicking
on an object in the tree, the right part of the screen will display the properties of this object. The
configurable properties vary with the object type.

The name and description fields are available for organisational units. Their name is displayed in the
tree, the description field can include additional notes or comments. We will go into more detail
explaining the tabs Permission management and User variables in the respective sections.

User objects will hold the personal data of the user. Beside the personal form of address, first
and last name, they include the user name, e-mail address and, if applicable, the password. If a
password has been manually entered in the Administration interface, it need not be changed by the
user on the next login. The usual procedure to reset a password or set a password for the first time
is to "activate" the user using the Activate button in the menu bar. One-time password is then
sent by e-mail to the user’s email address. The user will then be prompted to enter a new password
when logging in for the first time.

The guidelines regulating the generation of new passwords, or to which the password chosen by
the user has to comply, can by adapted via the configuration of the PasswordPolicy. For further
information on PasswordPolicy as well as on the various authentication procedures supported by
ReportServer we refer to the configuration guide.

15

3. User and Permission Management

The section Account blocking allows to inhibit individual users from accessing the system. The
block can be set either manually or automatically by setting a certain expiration date. Accounts
which have been blocked automatically, e.g. by exceeding the permissible number of login attempts,
are unblocked and reactivated here.

User groups are mainly used in connection with the permission management, and therefore, they
will be discussed in detail under this issue. Groups provide the possibility to summarize users who
are not located in the same branch of the user tree, and to treat them equally when assigning
rights. Beside the name and description fields, the user group configuration page has three fields
to manage the group members. In the Direct Members field, individual users can be added to the
group. The field Members (via groups) allows to add all members of another group to this group.
The effect is identical, as if the members of the subgroup had been added manually and individually
to the group. The field Members (via organisational units) eventually enables to add entire branches
of the user tree to a group. Here as well it is to be interpreted that all users given in the branch are
direct members of the group.

3.2 Permission Management

ReportServer principally distinguishes between two types of permissions. Generic rights are called
those permissions which regulate the access to components or functions of ReportServer. Examples
for generic rights are the basic right to login to the system, or to access the Admin section.

Beside the generic rights, object related rights can additionally be assigned. They always refer to
ReportServer objects organized in tree based data structures such as datasources, reports, users,
etc. Unlike generic rights, for the definition of object rights the inheritance of rights can be applied
which can considerably reduce the administrative effort when dealing with large and complex user
structures.

In ReportServer rights are assigned in form of Access Control Lists (ACL) and Access Control
Entries (ACE). An ACL exists for each object for which the access is to be restricted that is an
ACL exists for every report, datasource, folder,etc., but also for every generic right. An ACL then
consists of a list of ACEs that hold the following information:

Folk The user object which is granted the permission. This could be a user, a group, or an
organisational unit.

Access type Determines whether the permission entry expands the rights attributed by other
entries, or whether it further narrows them.

Basic rights Basic rights are assignable to all ReportServer objects. Their specific significance
depends on the type of the relevant object and will be discussed in the following:

Determining if a Permission is Granted

To test if a user has been granted a certain right ReportServer checks for each ACE (in the order
they are defined) if the ACE applies to the user, i.e., if the user is part of the folk (i.e., if the folk is
a group it is checked if the user is a member in this group, if the folk is an organisational unit, it is

16

3.2. Permission Management

checked if the user is part of that sub-tree and if the folk is a user it is tested if the users are the
same). If an ACE matches, the access type defines whether the right is granter or denied. This
means, that even if an ACE later in the ACL grants a right, but an earlier one denies it, the right
is not granted. If no ACE matches then the right is not granted. Consider the following example
ACL consisting of three ACEs. The first denies the read and write right for members of group A.
The second grants the read right to members of group B and the third grants the write right to
members of group C.

group A deny read write
group B allow read
group C allow write

To test if a user has the write right, it would first test weather the user is in group A. If so the
right is denied and no more checks are performed. In case the user is not in group A, ReportServer
would move to check the second ACE to find that it doesn’t say anything about the read right. It
then goes to the third ACE and tests if the user is in group C. If so, the right is granted. If the user
is not in group C, the right is denied as it has not been explicitly granted. This also means, that
any user which is not in group B or C would not have any rights on that particular object.

Also let us stress that ACEs are inspected in the order they are defined. This means if we change
the above ACL to

group A deny read write
group B allow read
group C allow write
group A allow read write

then still, any user that is in group A would not be granted read or write rights, since the check
would stop after the first ACE.

Generic rights

Generic rights are configured in the Permission management module located in the Administration
module. Here, the second column holds an entry for each generic permission, for example, there is
an entry for every ReportServer section for which access can be controlled via generic rights. For
each of these entries a single Access Control List is filed, the entries included in this list control the
access to the respective function.

To manage the existing permissions, or to add new ones use the buttons Add/Remove. The
configuration dialogue for this ACE will open by double clicking on an entry to edit its properties.

To edit generic rights (or object related rights, for that matter), beside the respective rights for the
Generic Permission Management section, you require the permission “grant rights (g)” each for the
object to which you want to assign permissions. In addition, you must own all the rights yourself
that you want to assign.

Note that you can use the haspermission terminal command described in Section 17.25
haspermission for checking generic permissions of a user.

17

3. User and Permission Management

In the following we discuss the various generic permissions. Note that the target is necessary for
checking generic permissions with the haspermission terminal command described in Section 17.25
haspermission.

Administration. The generic right Administration controls the access to the Administration module.
If reading right (r) is granted the user concerned can open the Administration module. The
access to Administration sub-modules must be released individually. Rights other than the
reading right are not queried.

Target: net.datenwerke.gf.service.genrights.AdministrationViewSecurityTarget

User variables. The user variables right controls the access to the User variables Administration
section. Reading right (r) releases the section for reading access. Writing right (w) additionally
en- ables to change the configuration.

Target: net.datenwerke.rs.uservariables.service.genrights.UserVariableAdminViewSecurityTarget

User management. The generic right User management controls the visibility of the Administration
sub-module for user management. Reading right is requested here, other rights will not be
used. The visibility of sections in the user tree and in what way they are visible to or modifiable
by a user will be controlled by the object rights in the user tree. Object rights will be discussed
in detail in the following section.

Target: net.datenwerke.security.service.genrights.usermanager.UserManagerAdminViewSecurityTarget

Report management. Report management access will be controlled by the generic right report
management. Reading right (r) determines whether the respective section is visible in the
Administration module. The release of rights in general or detail for individual objects in the
report tree will be determined by means of the object rights described in the following section.

Target: net.datenwerke.rs.core.service.genrights.reportmanager.ReportManagerAdminViewSecurityTarget

Dashboard. The generic dashboard right controls the access to the Dashboard module. If reading
right is set, the module is visible and can be used in a read only fashion. This means that
users can import predefined dashboards but they cannot make any changes or create custom
dashboards. If additionally the write permission is granted, users can fully use the dashboard
component.

Target: net.datenwerke.rs.dashboard.service.dashboard.genrights.DashboardViewSecurityTarget

Dashboard (admin). The generic right Dashboard Admin controls the access to the Dashboard
Library in the Administration module. If reading right is granted the section is visible, the
rights to the individual sub-trees of the Dadget library will be controlled by object rights.

Target: net.datenwerke.rs.dashboard.service.dashboard.genrights.DashboardAdminSecurityTarget

File system. The access to the File system section in the Admin module will be controlled via the
generic right File system. If reading right is granted the section is visible. The effectively
assigned access rights are controlled by setting the respective object right.

Target: net.datenwerke.rs.fileserver.service.fileserver.genrights.FileServerManagerAdminViewSecurityTarget

18

3.2. Permission Management

Datasinks. The datasinks generic right controls the access to the datasinks tree in the Admin
module. Reading right is queried. The actually granted access rights to single datasinks will
be controlled by object rights.

Target: net.datenwerke.rs.core.service.genrights.datasinks.DatasinkManagerAdminViewSecurityTarget

Datasources. The datasources generic right controls the access to the datasources tree in the
Admin module. Reading right is queried. The actually granted access rights to single
datasources will be controlled by object rights.

Target: net.datenwerke.rs.core.service.genrights.datasources.DatasourceManagerAdminViewSecurityTarget

Export. The generic right Export determines whether a user is allowed to export objects from a
Re- portServer Admin module in the xml format (cf. Export/Import). Executing right (x) is
queried.

Target: net.datenwerke.rs.eximport.service.genrights.ExportSecurityTarget

Generic permission management. Access to Generic permission management is controlled via
the right Generic permission management. Reading right here controls the visibility of the
respective module in the Admin section. To forward rights to individual modules the Grant
rights (g) right must have been additionally assigned for the respective section. Furthermore,
the user itself must hold the right that it wants to forward.

Target: net.datenwerke.security.service.genrights.security.GenericSecurityTargetAdminViewSecurityTarget

Global constants. The Global constants generic right controls the access to the section Global
constants in the Administration module. Here the reading right enables to read the defined
constants. For editing the global constants, write permissions are additionally required.

Target: net.datenwerke.rs.globalconstants.service.globalconstants.genrights.GlobalConstantsAdminViewSecurityTarget

Import. The generic right Import grants access to the Import module in the Administration section.
The execute (x) right will be checked.

Target: net.datenwerke.rs.eximport.service.genrights.ImportSecurityTarget

License management. The generic right Import grants access to the License Management module
in the Administration section. To view the license information the read (r) permission is
necessary. To adapt the license information the execute (x) permission is needed.

Target: net.datenwerke.rs.license.service.genrights.LicenseSecurityTarget

ReportServer access. The ReportServer Access right controls who has access to ReportServer,
i.e., on login ReportServer checks if the user has the execute (x) right.

Target: net.datenwerke.rs.core.service.genrights.access.AccessRsSecurityTarget

System Console. The generic permission System Console controls the access to the system console
in the Administration module. If reading right is granted the section is visible. All system
console subsections will be visible if the user has read permission on this generic permission.
Note that the "System Console" is an Enterprise feature.

Target: net.datenwerke.rs.adminutils.service.systemconsole.genrights.SystemConsoleSecurityTarget

19

3. User and Permission Management

SU command. Whether the SU function can be used will be controlled via the generic right SU
command. The execute right determines whether the user may use this function.

Target: net.datenwerke.rs.adminutils.service.su.genrights.SuSecurityTarget

TeamSpaces. The generic right TeamSpaces controls the permissions awarded for TeamSpaces.
Here, the reading right controls the general visibility of the section. The writing right
additionally enables the user to create new TeamSpaces. The delete permission allows users
to delete TeamSpaces if they either own the TeamSpace or have the administration role for
that particular TeamSpace. The specific Administrator permission grants a user administrative
rights to all TeamSpaces, which means the user can access all TeamSpaces and has full rights
in every TeamSpace. For details on TeamSpaces please refer to the ReportServer user guide.

Target: net.datenwerke.rs.teamspace.service.teamspace.genrights.TeamSpaceSecurityTarget

Terminal. The generic right Terminal controls the access to the terminal window. Here the execute
(x) right will be checked.

Target: net.datenwerke.rs.terminal.service.terminal.genrights.TerminalSecurityTarget

Scheduler. The generic right Scheduler controls the access to the user components of the Scheduler
module. The reading right enables users to open the Scheduler module in order to edit the
orders they scheduled before. The execute right enables to schedule reports.

Target: net.datenwerke.rs.scheduler.service.scheduler.genrights.SchedulingBasicSecurityTarget

Scheduler Admin View. The generic right Scheduler Admin View enables to access the Scheduler
module in the Admin section. Here, reading right enables to view the module. The execute
right enables to modify scheduling entries. It further allows to change the job executor.

Target: net.datenwerke.rs.scheduler.service.scheduler.genrights.SchedulingAdminSecurityTarget

SFTP. The generic right SFTP enables to access ReportServer via SFTP. Here, execute right
enables to access ReportServer via SFTP. Rights other than the execute right are not queried.

Target: net.datenwerke.rs.remoteaccess.service.sftp.genrights.SftpSecurityTarget

Object Related Rights

Besides generic rights, rights can be assigned at a fine granular level down to specific objects (such
as, reports, datasources, users, etc.). For such object related rights also ACLs are used. The
management of object related rights can be found at the object in question, that is for a report, go
to the report management module and access the report. The permission management view can be
accessed via the tab Permission management.

Note that you can use the haspermission terminal command described in Section 17.25
haspermission for checking object rights of a user.

Besides the ACE fields that are also available for generic rights, you can take advantage of the
hierarchical structure of objects for object related rights. That is, you can decide if an ACE only
applies to the object, whether it is inherited by all its descendants, or whether it applies to the
current object and is inherited by all descendants.

20

3.2. Permission Management

Object rights can be assigned in the areas Reportmanager, Dashboard Library, Datasources, File
System, and User management. In general, the right to read (r) allows users to see (resp. select)
the object, the right to write (w) allows to make changes and the right to delete (d) allows users
to remove the object. The execute (x) right controls whether a user can execute a report (resp.
ReportServer Script). Note that it is not necessary to have read rights to execute. Finally, the
grant rights (g) right gives a user the permission to grant rights to other users. Note that users
can only grant rights that they themselves hold. Furthermore, they must have read rights for the
folk (user, organisational unit or group) to whom they want to grant the right.

Verifying Object related Rights

To check if a user holds an object related right, ReportServer first checks all ACEs that are assigned
at the object in question and which apply to that object. If a decision cannot be made, ReportServer
goes on to the parent object and there checks all ACEs which are marked to be inherited by
descendants. This process is continued until a decision can be made or the root node has been
processed. By default rights ar not granted. We consider the following example:

Object A
+--- Object B
+------ Object C

In the example we consider three objects A, B, and C. Object B is a direct descendant (child)
of object A, and object C is a child of B. To test a right on Object C, ReportServer first checks
the ACEs defined at C (which also apply to C and in the order they are defined). If no conclusive
decision can be made, ReportServer goes on to object B and there checks all ACEs that are marked
to be inherited by descendants. If again, no conclusive decision can be made, ReportServer goes on
to A. If also here no decision is made, ReportServer will deny the acess.

Virtual Roots

If a user is given read access for a folder (or any other object) but does not have read access for
one of the parents of that object, then ReportServer will display the object as a virtual root in the
topmost level.

21

Chapter 4

Datasources

In ReportServer datasources serve as principal data basis for report objects, i.e. a report draws
the data to be displayed from a defined datasource. As with most other objects, datasources are
maintained in a hierarchical structure. The datasource management module is to be found in the
Administration module under Datasources. The following object types can be created in the tree:

Folder Serve to structure datasources.

Datasource Here various datasources are optionally available which we will discuss in more detail
in the following.

datasources will be configured in two steps. In datasource management, datasources will be created
and the basic settings made. For relational databases, here, for instance, user name, password and
access URL are stored. However, the specific configuration per use will be set at the point where
the datasource will be used (this is mostly with the respective report). Here, for instance, for a
relational database the SQL query can be set on which the report is based.

ReportServer supports the following datasources.

4.1 Relational Databases

It is possible to access common relational databases via the datasource type "Relational databases".
Use the option "database" to control the SQL dialect created by ReportServer. Currently, Report-
Server supports the following SQL dialects1:

• Amazon Redshift

• DB2

• Firebird

1Many other dialects can be integrated via scripting. For further information, refer to the ReportServer Scripting
Guide.

23

4. Datasources

• Google BigQuery

• H2

• HSQL

• Informix

• MariaDB

• MSSQL

• MonetDB

• MySQL

• Oracle

• PostgreSQL

• SQLite

• Sybase

• Teradata

• Vertica

Make sure to integrate the respective JDBC database driver prior to use. (For more detailed
information refer to the database driver description.) Information on how to set user name and
password as well as the URL is given in the data- base manual. In the following example we will
demonstrate how to configure a MySQL datasource.

After the initial installation, MySQL can usually be started by entering user name “root” and
password “root”. A JDBC URL could be as follows:

jdbc:mysql://127.0.0.1:3306/ClassicModels

After having transferred the data, and you wish to test whether ReportServer can establish a
database connection, apply the button Test connection. Be aware to always test the saved
connection.

The query will actually be configured when selecting the datasource, for instance, if you want to
create a dynamic list on the basis of this datasource.

Note that you can fetch any metadata information of your datasource supported by your
JDBC driver with the datasourceMetadata terminal command. More defails on Section 17.13
datasourceMetadata.

24

jdbc:mysql://127.0.0.1:3306/ClassicModels

4.2. Amazon Redshift

SQLite

SQLite https://www.sqlite.org/ s a C-language library that implements a small, fast, self-
contained, high-reliability, full-featured, file-based SQL database engine.

ReportServer supports SQLite datasources as of version 4.2.0 and contains the necessary driver as
well.

An example JDBC-URL pointing to the “db” database file is the following:

jdbc:sqlite:/path/to/your/sqlite/db

If you want to use your SQLite datasource for read-only purposes, you can add the following
JDBC-property to your datasource definition:

open_mode=1

4.2 Amazon Redshift

Amazon Redshift https://aws.amazon.com/redshift/ is a fast, fully managed data warehouse
that makes it simple and cost-effective to analyze all your data. It allows you to run complex
analytic queries against petabytes of structured data.

ReportServer supports Amazon Redshift by its official JDBC driver, downloadable from https://
docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html. Download
the JDBC 4.2-compatible version and install it in your ReportServer lib directory. We strongly
recommend using the external Configdir for this, as explained in the Configuration Guide. In such a
way, the driver will be separated from the ReportServer libraries and will not get overwritten with
your next ReportServer upgrade. At the moment of the writing, the version of the JDBC driver was
1.2.32.1056 (RedshiftJDBC42-no-awssdk-1.2.32.1056.jar).

As stated in the JDBC documentation, you have to obtain your JDBC URL from your AWS.
An example URL is jdbc:redshift://examplecluster.abc123xyz789.us-west-2.redshift.
amazonaws.com:5439/dev. In the ReportServer datasource user and password fields, put your
database user and password previously configured in AWS. More information can be found in the
Amazon Redshift documentation.

Note: If you get the following error: “Error setting/closing connection: Not Connected” try adding
to your connection pool’s configuration (pool.cf) the following property:

<idleConnectionTestPeriod>5</idleConnectionTestPeriod>

With this property set, c3p0 will test all idle, pooled but unchecked-out connections, every this
number of seconds. Add this property to your Redshift datasource. You can find more information
on the connection pool in the Configuration Guide.

4.3 Google BigQuery

Google BigQuery https://cloud.google.com/bigquery/ is a serverless, highly-scalable, and
cost-effective cloud data warehouse with an in-memory BI Engine and machine learning built in.

25

https://www.sqlite.org/
jdbc:sqlite:/path/to/your/sqlite/db
https://aws.amazon.com/redshift/
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html
jdbc:redshift://examplecluster.abc123xyz789.us-west-2.redshift.amazonaws.com:5439/dev
jdbc:redshift://examplecluster.abc123xyz789.us-west-2.redshift.amazonaws.com:5439/dev
https://cloud.google.com/bigquery/

4. Datasources

ReportServer supports Google BigQuery datasources by the official Simba JDBC driver. Down-
load the JDBC 4.2-compatible version from the Simba web site (https://cloud.google.com/
bigquery/providers/simba-drivers/?hl=en) and add the all .jars in the downloaded zip to
your lib directory exluding the following libraries, since these are already included in ReportServer:

• commons-codec-1.10.jar

• commons-lang3-3.5.jar

• guava-26.0-android.jar

• jackson-core-2.9.6.jar

• jackson-core-asl-1.9.13.jar

• jackson-mapper-asl-1.9.13.jar

• javax.annotation-api-1.2.jar

• jsr305-3.0.2.jar

• slf4j-api-1.7.7.jar

At the moment of writing, the Simba JDBC driver had version 1.2.0.1000.

We strongly recommend using the external Configdir for this, as explained in the Configuration
Guide. In such a way, the libraries will be separated from the ReportServer libraries and will not get
overwritten with your next ReportServer upgrade.

The Simba JDBC driver download includes a configuration guide (Simba JDBC Driver for Google
BigQuery Install and Configuration Guide.pdf). The “Configuring Authentication” section includes
some authentication options; use e.g. the “Using a Google Service Account” option.

Your URL should look similar to this:

jdbc:bigquery://https://www.googleapis.com/bigquery/v2:443;ProjectId=MyBigQueryProject;
OAuthType=0;OAuthServiceAcctEmail=bqtest1@data-driver-testing.iam.gserviceaccount.
com;OAuthPvtKeyPath=/SecureFiles/ServiceKeyFile.json;

Your username and password fields should be empty in ReportServer, since they are not being used.

In some cases, you may also want to adapt the timeout parameter, you can change it by appending
it into the URL:

jdbc:bigquery://https://www.googleapis.com/bigquery/v2:443;ProjectId=MyBigQueryProject;
OAuthType=0;OAuthServiceAcctEmail=bqtest1@data-driver-testing.iam.gserviceaccount.
com;OAuthPvtKeyPath=/SecureFiles/ServiceKeyFile.json;Timeout=3600

For more details refer to the Simba JDBC Driver Configuration Guide.

26

https://cloud.google.com/bigquery/providers/simba-drivers/?hl=en
https://cloud.google.com/bigquery/providers/simba-drivers/?hl=en
jdbc:bigquery://https://www.googleapis.com/bigquery/v2:443;ProjectId=MyBigQueryProject;OAuthType=0;OAuthServiceAcctEmail=bqtest1@data-driver- testing.iam.gserviceaccount.com;OAuthPvtKeyPath=/SecureFiles/ServiceKeyFile.json;
jdbc:bigquery://https://www.googleapis.com/bigquery/v2:443;ProjectId=MyBigQueryProject;OAuthType=0;OAuthServiceAcctEmail=bqtest1@data-driver- testing.iam.gserviceaccount.com;OAuthPvtKeyPath=/SecureFiles/ServiceKeyFile.json;
jdbc:bigquery://https://www.googleapis.com/bigquery/v2:443;ProjectId=MyBigQueryProject;OAuthType=0;OAuthServiceAcctEmail=bqtest1@data-driver- testing.iam.gserviceaccount.com;OAuthPvtKeyPath=/SecureFiles/ServiceKeyFile.json;
jdbc:bigquery://https://www.googleapis.com/bigquery/v2:443;ProjectId=MyBigQueryProject;OAuthType=0;OAuthServiceAcctEmail=bqtest1@data-driver- testing.iam.gserviceaccount.com;OAuthPvtKeyPath=/SecureFiles/ServiceKeyFile.json;Timeout=3600
jdbc:bigquery://https://www.googleapis.com/bigquery/v2:443;ProjectId=MyBigQueryProject;OAuthType=0;OAuthServiceAcctEmail=bqtest1@data-driver- testing.iam.gserviceaccount.com;OAuthPvtKeyPath=/SecureFiles/ServiceKeyFile.json;Timeout=3600
jdbc:bigquery://https://www.googleapis.com/bigquery/v2:443;ProjectId=MyBigQueryProject;OAuthType=0;OAuthServiceAcctEmail=bqtest1@data-driver- testing.iam.gserviceaccount.com;OAuthPvtKeyPath=/SecureFiles/ServiceKeyFile.json;Timeout=3600

4.4. Teradata

4.4 Teradata

Teradata https://www.teradata.com/ is a fully scalable relational database management system
produced by Teradata Corp. It is widely used to manage large data warehousing operations.

ReportServer supports Teradata datasources by the official Teradata JDBC driver. Download the
driver from https://downloads.teradata.com/download/connectivity/jdbc-driver and add
it to your libs directory. We strongly recommend using the external Configdir for this, as explained
in the Configuration Guide. In such a way, the libraries will be separated from the ReportServer
libraries and will not get overwritten with your next ReportServer upgrade.

At the moment of writing, the Teradata JDBC driver had version 16.10.00.07.

Your URL should look similar to this: jdbc:teradata://IP/DATABASE=myDatabase

4.5 Storage of Database Passwords

In the ReportServer development we particularly emphasized the safety of the system to the greatest
possible extent. One of the main issues was to store sensitive data as securely as possible. Therefore,
the datasource settings are of special importance as they provide the potential to access your
data warehouse. To store passwords as securely as possible, we follow a two-way strategy. Firstly,
database passwords should never be transferred to the client (to your web browser), but only be
used to establish database connections. This results in the datasource password field always being
empty upon reloading the form. However, you may safely change the datasource, the password
will only be reset when you add an entry to the password field. The second safety measure is that
ReportServer database passwords will be encrypted when saving. For further information, please
refer to the configuration instructions.

4.6 Datasource Pool

Datasource connections can be provided in a pool in ReportServer. This can clearly increase
the performance and enables to better control the individual connections. If pooling is activated,
ReportServer keeps a pre-defined number of connections open per relational database integrated.
ReportServer will recycle these connections by user to save the costs incurred for setting up the
connection. In the configuration guide you will find detailed information on how to pool databases
exactly and which settings to enter.

4.7 CSV Lists

Apart from relational databases, ReportServer can provide data in form of CSV files (Comma-
Separated Values; further information on CSV you will find, for example, at http://en.wikipedia.
org/wiki/Comma-separated_values) as data basis for reports. To work with a CSV List, create
one. To set the format of your CSV file, use the fields

Quotes: Delimiting characters for an individual data record.

Separator: Separating character between data records

27

https://www.teradata.com/
https://downloads.teradata.com/download/connectivity/jdbc-driver
jdbc:teradata://IP/DATABASE=myDatabase
http:// en.wikipedia.org/wiki/Comma-separated_values
http:// en.wikipedia.org/wiki/Comma-separated_values

4. Datasources

Use the Connector setting to define the location of the CSV data. The following connectors are
presently supported:

Text-Connector: Allows to directly enter data in a text field at the datasource.

Argument-Connector: Allows to directly enter data in a text field when selecting the datasource. This
enables, for instance, to easily simulate static lists for report parameters (refer to
the section on datasource parameters).

URL-Connector: Allows to load data by using an URL. Please observe that you have the option to
load the data (per URL) from the internal ReportServer file system (refer here to
the Section File Server). In order for this to work, note you have to select the
“Share folder for web access” checkbox of the folder containing your CSV file.

Database Cache

As described before, prior to its use, CSV data will be loaded to internal temporary tables. This
may take some time if you load a larger data volume for the first time. Therefore, it is quite often
reasonable not to continuously load the data. Use the Cache database setting to determine after
how many minutes the data should be reloaded from the source to the internal temporary tables. If
you set -1, the data will be loaded only one time. If you set 0, the data will be reloaded every time
you use it.

If you wish to load the data manually (because they were changed) it is sufficient to simply save
the datasource again. After every saving process, ReportServer will initiate that the data will be
removed from the internal cache and reloaded again.

Please observe that in case of the Argument Connector, ReportServer will ignore the cache setting,
so the data will not be cached.

Configuration at the Object

Similar to relational databases, you can make additional settings for CSV datasources at the location
where the datasource will be selected (e.g. at the report or parameter). As already explained, CSV
data will be buffered to internal, temporary tables. The query type to be used is

SELECT * FROM _RS_TMP_TABLENAME

where _RS_TMP_TABLENAME is a temporary table name assigned by ReportServer. Using the Query
Wrapper setting, now you can extend the query created automatically. Here, use the syntax for
parameters (see section on report parameters). The following replacements will be available to you:

_RS_TMP_TABLENAME: The name of the table

_RS_QUERY: The basic query.

For instance, by using the following query you could limit the data volume to all those data records
where the attribute REGION has value 3.

SELECT * FROM $!{_RS_TMP_TABLENAME} WHERE REGION = "3"

28

4.8. Script datasources

Please observe that any CSV data will generally be treated as if it were of type string. In addition, we
want to point out that if you use replacements, you need to use $!{} instead of ${} as replacements
need to be directly written into the query (for further information on the replacement syntax refer
to Section 7.3 Working with Parameters on page 64).

If you wish to use CSV datasources together with Jasper, BIRT, or JXLS reports, refer to the
Scripting Documentation, Chapter “Script Datasources”, as this can be done in an analogous way.

4.8 Script datasources

If you wish to load data which are in a format that has not been supported so far, or if you wish to
perform complex pre-processing of data, it is advisable to use script datasources. Script datasources
provide data by running a ReportServer script and, therefore, they can be applied very flexibly.
Similar to CSV lists, the result of a script datasource will first be buffered in the internal temporary
tables. Here as well, you will have the option to define in the Cache database setting how often
the data will be reloaded.

Script datasources run a ReportServer script whenever the datasource is accessed. This script will
be filed with the datasource and, if selected, it can be parameterized with a report (i.e. parameters
can be transferred to the script). The return value of the script must be an object of type
RSTableModel (included in the package net.datenwerke.rs.base.service.reportengines.
table.output.object). In the following we will give a simple example script which builds up a
static table consisting of 3 columns.

import net.datenwerke.rs.base.service.reportengines.table.output.object.*;

def definition = new TableDefinition(['a','b','c'],
[Integer.class,Integer.class,Integer.class]);

def model = new RSTableModel(definition);
model.addDataRow(1,2,3);
model.addDataRow(4,5,6);
model.addDataRow(7,8,9);

return model;

Configuration at the Object

You can further reduce the data volume by using Query wrapper in the same way as you proceeded
with CSV datasources. In addition, you can pass arguments to the script, which can be referred in
the script with the args variable. E.g., refer to the following example:

import net.datenwerke.rs.base.service.reportengines.table.output.object.*;

def definition = new TableDefinition(['a','b','c'],
[String.class,String.class,String.class]);

def model = new RSTableModel(definition);
model.addDataRow(args[0],"2","3");
model.addDataRow("4","5","6");

29

net.datenwerke.rs.base.service.reportengines.table.output.object
net.datenwerke.rs.base.service.reportengines.table.output.object

4. Datasources

model.addDataRow("7","8","9");

return model;

The args[0] prints the 0th argument passed to the script. You can either pass a text, e.g.“myValue”,
or the value of a given report parameter, e.g. ${myParam} for a “myParam” parameter. Note that if
the value contains blank spaces, quotation marks are needed.

Refer to the Script Guide, Chapter “Script Datasources” for more details. Further, if you wish to
use script datasources together with Jasper, BIRT, or JXLS reports, also refer to the Scripting
Documentation, Chapter “Script Datasources”.

Further, useful script datasource examples can be found in our GitHub samples project: https:
//github.com/infofabrik/reportserver-samples.

4.9 BIRT Report datasource

The BIRT report engine enables to define data records within BIRT Reports. For instance, they
can be used for feeding parameters. By using BIRT Report datasources, you can access this data
in ReportServer.

As the most frequent application case for BIRT Report datasources will surely be the reading out
of parameters, the BIRT datasource will directly be configured at the report. This means you only
have to create a datasource in the datasource tree, any further configuration will be entered at the
location where it is used. When using the datasource, you eventually have to select the respective
BIRT report and enter the name of the data set. Please observe that BIRT provides the option to
access so-called “data sets” as well as parameter data. Depending on the origin of the data, you
have to set the respective type.

In the same way as you proceeded with CSV and script datasources, you can modify the query by
using the Query wrapper configuration.

4.10 Mondrian Datasource

Mondrian is a java-based OLAP engine (Online Analytical Processing) developed by Pentaho
(http://mondrian.pentaho.com) allowing you to perform multi-dimensional analysis on your data.
For an introduction to OLAP and Mondrian we refer to the Mondrian documentation available
online at http://mondrian.pentaho.com/documentation and we assume basic familiarity with
Mondrian and OLAP for the following discussion.

Mondrian datasources are used to define so called Mondrian schemas which can then be used by the
Mondrian backed Saiku reporting format within ReportServer (see Chapter 7.7 Saiku / Mondrian
Reports). The main configuration options of Mondrian datasources are

Properties: The properties define the connection to the underlying relational database.

Schema: The schema describes the data warehouse semantics.

30

https://github.com/infofabrik/reportserver-samples
https://github.com/infofabrik/reportserver-samples
http://mondrian.pentaho.com
http://mondrian.pentaho.com/documentation

4.10. Mondrian Datasource

Note: in order to configure your Mondrian instance you can create a "mondrian.properties" file
in your WEB-INF/classes directory or modify it if it already exists. In this file you can set the
Mondrian properties needed, e.g. "mondrian.rolap.queryTimeout=3" (without the quotes). This
property gives you an error if your query runs more than 3 seconds. Refer to https://mondrian.
pentaho.com/documentation/configuration.php for all Mondrian configuration options.

When you create a new Mondrian datasource, ReportServer already specifies an example definition
for the properties pointing at a MySQL database called foodmart2.

type=OLAP
name=Foodmart
driver=mondrian.olap4j.MondrianOlap4jDriver
location=jdbc:mondrian:Jdbc=jdbc:mysql://localhost/foodmart
jdbcDrivers=com.mysql.cj.jdbc.Driver
jdbcUser=
jdbcPassword=

A Mondrian schema defines multi-dimensional data warehouses on top of relational databases that
are usually assumed to be managed in a star schema like form. Following is a simple schema
definition based on the foodmart demo data and taken from the Mondrian documentation3. The
schema consists of a single cube called Sales which is made up of two dimensions (Gender and
Time) and four measures.

<Schema>
<Cube name="Sales">
<Table name="sales_fact_1997"/>
<Dimension name="Gender" foreignKey="customer_id">
<Hierarchy hasAll="true" allMemberName="All Genders" primaryKey="customer_id">
<Table name="customer"/>
<Level name="Gender" column="gender" uniqueMembers="true"/>

</Hierarchy>
</Dimension>
<Dimension name="Time" foreignKey="time_id">
<Hierarchy hasAll="false" primaryKey="time_id">
<Table name="time_by_day"/>
<Level name="Year" column="the_year" type="Numeric" uniqueMembers="true"/>
<Level name="Quarter" column="quarter" uniqueMembers="false"/>
<Level name="Month" column="month_of_year" type="Numeric" uniqueMembers="false"/>

</Hierarchy>
</Dimension>
<Measure name="Unit Sales" column="unit_sales" aggregator="sum" formatString="#,###"/>
<Measure name="Store Sales" column="store_sales" aggregator="sum" formatString="#,###.##"/>
<Measure name="Store Cost" column="store_cost" aggregator="sum" formatString="#,###.00"/>
<CalculatedMember name="Profit" dimension="Measures" formula="[Measures].[Store Sales] - [Measures ⤦

 Ç].[Store Cost]">
<CalculatedMemberProperty name="FORMAT_STRING" value="$#,##0.00"/>

</CalculatedMember>
</Cube>

</Schema>

Schema and properties are sufficient for the Mondrian server to query the defined ware house using
queries written in the MDX language, an SQL like query language first introduced by Microsoft in
1997 (see, e.g., http://en.wikipedia.org/wiki/Multidimensional_Expressions). In order

2The foodmart is Mondrian’s demo dataset that comes with various cubes demonstrating the OLAP capabilities of
Mondrian.

3http://mondrian.pentaho.com/documentation/schema.php

31

https://mondrian.pentaho.com/documentation/configuration.php
https://mondrian.pentaho.com/documentation/configuration.php
http://en.wikipedia.org/wiki/Multidimensional_Expressions
http://mondrian.pentaho.com/documentation/schema.php

4. Datasources

to use Mondrian within ReportServer you will need to create so called Saiku reports (see Chapter 7.7
Saiku / Mondrian Reports) which provide a beautiful user interface to access a data specified in a
cube in a Pivot like fashion.

4.11 Datasource Bundle

The datasource bundle allows you to use the same report for different datasources an have the
users select which database to use. To use this feature you first have to define sets or bundles
of similar datasources from which a selection can be made. For this, in the datasource manager
create a new datasource of type database bundle. After you configured the bundle, instead of using
a specific datasource, you use the bundle as the datasource for your report.

The database bundle needs two options to be configured: The Key Provider defines where the key
used for the lookup of the actual datasource (the datasource that is selected for a single execution)
is taken from. There are two key providers:

Login Key Provider The login dialog contains a dropdown list that allows the user to select the
key the bundle uses to lookup the assigned datasource. For this to work
properly you have to configure the available values in the /etc/datasources/-
databasebundle.cf file. Please refer to the Configuration guide for additional
information.

Report Parameter Provider One of the report parameters is used to provide the key the bundle uses to
lookup the assigned datasource. You also have to enter the parameter-key
of the parameter that will be used.

The Mapping provider defines how a datasource gets selected from the key. There are three
providers to choose from:

Static Mapping The static mapping allows you to manualy specify a map of keys and
associated datasources.

Auto: Ds-Node (by ID) Instead of manually adding all the datasources for the bundle to your mapping
this mapping provider automatically chooses the datasource that has an id
matching the provided key. The mapping table is used to specify the search
path. You can add single datasources or whole folders to your mapping. If
you add a folder to your mapping, the datasources must be direct children
of the given folder. The key column is ignored in this configuration.

Auto: Ds-Node (by Name) Similar to the previous strategy this mapping provider automatically chooses
from a set of datasource without explicitly defining a key for each datasource.
Instead of using the id to find a matching datasource, the datasources name
is used. If your bundle contains multiple datasources with the same name,
the result is undefined.

Tip. You can also use a datasource bundle as the datasource for a database parameter. If
you use the Report Parameter Key Provider you have to make the parameter that uses the
bundle dependent on the parameter that is used as the key source.

32

4.12. Configuration of a Standard Datasource

4.12 Configuration of a Standard Datasource

For a quick configuration of reports, ReportServer allows to define a default datasource. It can
then be configured by a single click at the locations where datasources can be selected. The default
datasource can be set up by using the configuration file etc/datasources/data- sources.cf (in the
internal file system, refer also to the configuration guide). In the following please find a sample
configuration selecting the datasource by name. It can optionally be selected by its ID.

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<datasource>
<defaultDatasourceName>Demodaten</defaultDatasourceName>

</datasource>
</configuration>

Please observe to run the terminal command config reload when configuration files have been
modified. For further information see the ReportServer configuration guide as well as Chapter
13 Terminal.

33

Chapter 5

Datasinks

Datasinks are the counterpart of datasources in ReportServer. Reports can be sent to any datasink
defined, e.g. to a FTP or SFTP datasink. Reports may be sent directly to a datasink (via the
SendTo button) or scheduled to be sent to a specific datasink. Multiple datasinks of the same
type are allowed, analogously as datasources. Further, as with most other objects in ReportServer,
datasinks are maintained in a hierarchical structure. The datasink management module can be
found in the Administration module under Datasinks. The following object types can be created in
the tree:

Folder Serve to structure datasinks.

Datasink Here various datasinks are optionally available which we will discuss in more detail in the
following.

Datasinks will be configured in two steps. In datasink management, datasinks will be created and
the basic settings made. For FTP datasinks, here, for instance, user name, password, default folder
and FTP URL are stored. However, the specific configuration per use will be set at the point where
the datasink will be used (this is mostly with the respective report). Here, for instance, for a FTP
datasink, the specific folder can be set where the report should be stored. The default folder can be
used or a new folder can be defined for the specific use.

Datasinks may either completely disabled, or disabled for a specific type, or scheduling may be disabled
for this type. Disabling datasinks may be done in /fileserver/etc/datasinks/datasinks.cf.
Details on this can be found in the Configuration Guide.

ReportServer supports the following datasinks.

• Email - SMTP

• Table datasinks (available in Enterprise Edition)

• SFTP

• FTPS

35

5. Datasinks

• FTP

• Samba - SMB/CIFS (available in Enterprise Edition)

• Amazon S3 (available in Enterprise Edition)

• SCP (available in Enterprise Edition)

• Local filesystem (available in Enterprise Edition)

• Printer (available in Enterprise Edition)

• Script datasinks (available in Enterprise Edition)

• OAuth2-authenticated datasinks:

– Dropbox (available in Enterprise Edition)

– OneDrive - SharePoint (O365) (available in Enterprise Edition)

– Google Drive (available in Enterprise Edition)

– Box (available in Enterprise Edition)

5.1 Email - SMTP

Email SMTP datasinks allow to send and/or schedule reports to a given SMTP server. Email
SMTP datasink configuration can be made in the Administration area. Its permissions can be
administrated analogous as other objects in ReportServer.

In order for ReportServer to be able to send mails you must specify the mail server settings. Make
the following configurations in your Email SMTP datasink.

Setting up the SMTP server. Replace the values host, port, username, and password according to
your SMTP server.

Host: mail.yourmailserver.com
Port: 25
Username: rs@yourmailserver.com
Password: passwordsecret
SSL: false
TLS enable: false
TLS require: false

If you are using SSL or TLS please also specify these values. Next, configure the sender name,
email address and forceSender options. If the forceSender option is set to true, the emails will be
sent using the given (generic) sender details. If set to false, the specific user sending the email will
determine the sender details.

Sender: rs@yourmailserver.com
Sender name: ReportServer
Force sender: false
Encryption policy: allow_mixed

36

5.2. Table datasinks

The encryption policy option controls whether or not mails have to be encrypted or whether it is
ok to send mails unencrypted if a user’s public key is not specified. Choose between strict and
allow_mixed. Note that if you choose strict then mails to users that do not have public key
registered with ReportServer will not receive any messages.

Note that you can specify a default datasink per datasink type in the /etc/datasinks/datasinks.cf
configuration file. Details can be found in the Configuration Guide.

5.2 Table datasinks

Table datasinks allow you to send and/or schedule dynamic list reports into to a given table in any
datasource supported by ReportServer. This allows you to easily transfer data from MySQL to
Oracle, for example. The destination table must exist and must be compatible with the dynamic
list, i.e. the fields must exist, have the same name, and have compatible data types.

Table datasink configuration can be made in the Administration area. Its permissions can be
administrated analogous as other objects in ReportServer.

In order to configure a table datasink, the following must be set:

Datasource The datasource to send the data to.

Destination table name The table name. This table must exist in the given datasource, be
reachable, and compatible to the dynamic list transfering the data.

;-separated list of primary keys in destination table The destination table may of course contain
one or more primary keys. These can be entered here, separating them by “;”. For example,
if your destination table has one primary key “ENTITY_ID”, you can enter “ENTITY_ID”.
If your destination table has two primary keys “ENTITY_ID” and “ENTITY_ID2”, you can
enter “ENTITY_ID;ENTITY_ID2”.

Copy primary keys If your destination primary keys are of autoincrement-type, their values should
not be copied to the destination table, as your DB calculates the ids automatically. In this
case, you should not set this checkbox. However, if you want to copy the primary key values,
you should set this checkbox.

Batch size The table is copied in batches for performance reasons. You may adapt the batch size
here.

When you schedule a dynamic list to a table datasink, you should select “Stream table” as an export
type.

Note that you can specify a default datasink per datasink type in the /etc/datasinks/datasinks.cf
configuration file. Details can be found in the Configuration Guide.

37

5. Datasinks

5.3 SFTP

SFTP datasinks allow to send and/or schedule reports to a SFTP server. SFTP datasink con-
figuration can be made in the Administration area. Permissions to SFTP datasinks can be given
analogously as to other objects in ReportServer.

The host can be entered using the following format:

sftp://sftpHost

Currently, ReportServer supports the following authentication methods:

• Username Password Authentication

• Public Key Authentication

All passwords and private keys are encrypted and saved into the ReportServer database. Note that
the private key passphrase may be empty, but it is highly recommended to use a passphrase.

Further, note that for SFTP to work, you have to add your SFTP host to your /etc/ssh/known_hosts
file (https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_Files#~/.ssh/known_
hosts) in order to verify the identity of the remote host, thus protecting against impersonation or
man-in-the-middle attacks. Its location can be configured in the /fileserver/etc/security/misc.cf
file as described in the Configuration Guide. For manually adding a public key to the /etc/ssh/known_hosts
file, check here: https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_Files#
Manually_Adding_Public_Keys_to_~/.ssh/known_hosts.

Note that if the (extension) folder/folders does/do not exist, it/they is/are created. If the report
already exists in the same path, it is overwritten.

5.4 FTPS

FTPS datasinks allow to send and/or schedule reports to a FTPS server. FTPS datasink con-
figuration can be made in the Administration area. Permissions to FTPS datasinks can be given
analogously as to other objects in ReportServer.

The host can be entered using the following format:

ftps://sftpHost

Currently, ReportServer supports the following authentication method:

• Username Password Authentication

All passwords are encrypted and saved into the ReportServer database.

Note that if the (extension) folder/folders does/do not exist, it/they is/are created. If the report
already exists in the same path, it is overwritten.

38

https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_Files#~/.ssh/known_hosts
https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_Files#~/.ssh/known_hosts
https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_Files#Manually_Adding_Public_Keys_to_~/.ssh/known_hosts
https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_Files#Manually_Adding_Public_Keys_to_~/.ssh/known_hosts

5.5. FTP

5.5 FTP

FTP datasinks allow to send and/or schedule reports to a FTP server. FTP datasink configuration
can be made in the Administration area. Active and passive FTP modes are supported. Permissions
to FTP datasinks can be given analogously as to other objects in ReportServer.

The host can be entered using the following format:

ftp://ftpHost

Note that if the (extension) folder/folders does/do not exist, it/they is/are created. If the report
already exists in the same path, it is overwritten.

Note that that FTP datasinks are supported as of ReportServer 3.4.0. For scheduled reports
using the legacy FTP functionality, a dummy FTP datasink is created on ReportServer start
(found in the Administration area, in the datasink root folder). This dummy FTP datasink must
be adapted in order for these reports to further work.

5.6 Samba - SMB/CIFS

Samba - SMB/CIFS datasinks allow to send and/or schedule reports to a given Samba server
using SMB/CIFS protocols. Samba - SMB/CIFS datasink configuration can be made in the
Administration area. Permissions to local Samba - SMB/CIFS datasinks can be given analogously
as to other objects in ReportServer.

The host can be entered using the following format:

smb://sambaHost

Note that the path must exist and must be writable by your Samba’s user. If the report already
exists in the same path, it is overwritten.

5.7 Amazon S3

Amazon S3 datasinks allow to send and/or schedule reports to a given S3 bucket. The datasink
configuration can be made in the Administration area. Permissions to local S3 datasinks can be
given analogously as to other objects in ReportServer.

You can create an access and a secret key as described here: https://docs.aws.amazon.com/
general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys. Fur-
ther, the unique bucket name and region must be entered into the datasink definition.

If the report already exists in the same path, it is overwritten.

More information can be found here: https://docs.aws.amazon.com/en_en/AmazonS3/latest/
userguide/Welcome.html.

39

https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://docs.aws.amazon.com/en_en/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/en_en/AmazonS3/latest/userguide/Welcome.html

5. Datasinks

5.8 SCP

SCP datasinks allow to send and/or schedule reports to a given SCP (SSH) server. SCP datasink
configuration can be made in the Administration area. Permissions to local SCP datasinks can be
given analogously as to other objects in ReportServer.

The host can be entered using the following format:

scp://scpHost

Note that the path must exist and must be writable by your SCP user. An absolute destination
folder is required, so relative paths like "./" do not work here. If the report already exists in the
same path, it is overwritten.

Currently, ReportServer supports the following authentication methods:

• Username Password Authentication

• Public Key Authentication

All passwords and private keys are encrypted and saved into the ReportServer database. Note that
the private key passphrase may be empty, but it is highly recommended to use a passphrase.

Further, note that for SCP datasinks to work, you have to add your SCP server host to your
/etc/ssh/known_hosts file (https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_
Files#~/.ssh/known_hosts) in order to verify the identity of the remote host, thus protect-
ing against impersonation or man-in-the-middle attacks. Its location can be configured in the
/fileserver/etc/security/misc.cf file as described in the Configuration Guide. For manually
adding a public key to the /etc/ssh/known_hosts file, check here: https://en.wikibooks.org/
wiki/OpenSSH/Client_Configuration_Files#Manually_Adding_Public_Keys_to_~/.ssh/known_
hosts.

5.9 Local Filesystem

Local filesystem datasinks allow to send and/or schedule reports to a given directory of your local
filesystem, i.e. where your ReportServer is installed. Local filesystem datasink configuration can be
made in the Administration area. Permissions to local filesystem datasinks can be given analogously
as to other objects in ReportServer.

You can enter a path to a given folder in your filesystem as follows:

/users/myuser/myreports

in Linux/Mac, and

C:/myuser/myreports

in Windows.

40

https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_Files#~/.ssh/known_hosts
https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_Files#~/.ssh/known_hosts
https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_Files#Manually_Adding_Public_Keys_to_~/.ssh/known_hosts
https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_Files#Manually_Adding_Public_Keys_to_~/.ssh/known_hosts
https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_Files#Manually_Adding_Public_Keys_to_~/.ssh/known_hosts

5.10. Printer Datasinks

The path in the datasink definition determines the base path of the datasink. It also contains a
default folder/default folders, which can be overriden in specific uses of this datasink, analogously
to other datasink types.

Note that the base path must exist and must be writable by your Tomcat’s user. If the (extension)
folder/folders does/do not exist, it/they are created. If the report already exists in the same path,
it is overwritten.

5.10 Printer Datasinks

Printer Datasinks allow to send and/or schedule reports to a given printer. Printer datasink
configuration can be made in the Administration area. Permissions to printer datasinks can be given
analogously as to other objects in ReportServer.

Note that, while scheduling, you have to select the “PDF” export type in order to use printer
datasinks.

Be careful when sending large reports to the printer, this may stuck your printer depending on
your configuration.

5.11 Script Datasinks

Script Datasinks allow you to send and/or schedule reports to virtually any custom location you
need. They also allow you to add custom files/logic to your datasinks. Script datasink configuration
can be made in the Administration area. Permissions to script datasinks can be given analogously
as to other objects in ReportServer.

Details on script datasinks and an example datasink can be found in the Script Guide.

5.12 OAuth2-authenticated datasinks

OAuth2-authenticated datasinks use, as their name suggest, OAuth2 https://oauth.net/2/, the
industry-standard protocol for authorization.

Before being able to use oauth2-datasinks, you have to create an app in the service needed and
authorize file uploads in this app. You can then add your app key and app secret into the respective
ReportServer fields and save the datasink.

When this is achieved, you can click the “Datasink OAuth2 Authentication Setup”, which redirects
you to the service authorization. Please note that you have to add the “redirect URI” into your app.
This redirect URI is shown when clicking the before-mentioned button. The URI should be similar as
this: http://localhost:8080/ReportServer/reportserver/oauth. When this is done, after
app authorization and automatic redirection, you should be able to use your oauth2-datasinks. For
testing your datasink, as with other ReportServer datasinks, you can use the “Test datasink” button.

41

https://oauth.net/2/
http://localhost:8080/ReportServer/reportserver/oauth

5. Datasinks

5.13 Dropbox

Dropbox OAuth2-authorized datasinks allow you to send and/or schedule reports to a given directory
in your Dropbox https://www.dropbox.com/ account. Note that Dropbox for Business is also
supported: https://www.dropbox.com/business/.

For getting your “app key” and “secret key”, you have to create an app here: https://www.dropbox.
com/developers/apps/ and give it the appropriate permissions. Specifically, files.content.write
and files.metadata.write is needed. More information on this can be found here: https:
//developers.dropbox.com/de-de/oauth-guide. Note that when permissions are changed, it
is necessary to create a new “refresh token” with the “Datasink OAuth Authentication Setup” button.

The path in the datasink definition determines the base path of the datasink. It also contains a
default folder/default folders, which can be overriden in specific uses of this datasink, analogously
to other datasink types.

Note that the base path must exist. If the (extension) folder/folders does/do not exist, it/they
is/are created. If the report already exists in the same path, it is overwritten. The path should be
entered like this: /my/path. Note that, different as in other datasinks, ./my/path does not work.

5.14 OneDrive - SharePoint (O365)

OneDrive - SharePoint (O365) OAuth2-authorized datasinks allow you to send and/or schedule
reports to a given directory in your OneDrive - SharePoint (O365) http://onedrive.com/ account.
Note that OneDrive for Business is also supported (Office 365), as well as SharePoint O365. Older
SharePoint versions are currently not supported.

For getting your “app key” and “secret key”, you have to create an app registration here: https://
portal.azure.com/ (Azure Active Directory - App registrations section) and give it the appropriate
API permissions (API permissions section). Specifically, files.readwrite.all is needed. The
secret key can be created in the “Certificates and secrets” section. More information on this can be
found here: https://docs.microsoft.com/en-us/graph/auth-register-app-v2. Note that
when permissions are changed, it is necessary to create a new “refresh token” with the “Datasink
OAuth Authentication Setup” button.

The “base root” path in the datasink definition, together with the “folder” path, determines the
base path of the datasink. The default folder/folders are also included, which can be overriden in
specific uses of this datasink, analogously to other datasink types.

If needed, you can configure your tenant id, available in your Microsoft account. You can use the
default if this is not needed or if you don’t have a custom tenant id.

Note that the base path must exist. The default “base root” points to your User’s OneDrive. You
can change this to some other drive, e.g.:

/sites/mySharePoint.sharepoint.com,d489891a-364e-4c89-8156-ee045257235c,9e23eb81- ⤦
 Ç e053-444e-8716-2269fc0763d0e/lists/33459768-096a-4107-834a-d5c2a5ce0299/ ⤦
 Ç drive/root:

42

https://www.dropbox.com/
https://www.dropbox.com/business/
https://www.dropbox.com/developers/apps/
https://www.dropbox.com/developers/apps/
https://developers.dropbox.com/de-de/oauth-guide
https://developers.dropbox.com/de-de/oauth-guide
http://onedrive.com/
https://portal.azure.com/
https://portal.azure.com/
https://docs.microsoft.com/en-us/graph/auth-register-app-v2

5.15. Google Drive

You may also make use of the terminal command onedrive to configure the “baseroot”: First use
onedrive group getmygroups for an overview of all groups you have access to. Afterwards use
the group-id to list all available drives with onedrive group-id getdrivesof. Then you may
configure your “baseroot” as such

/drives/your-drive-id/root:

Refer to Section 17.44 onedrive for more information on the onedrive terminal commands.

More information on this can be found here: https://docs.microsoft.com/en-us/graph/api/
resources/onedrive?view=graph-rest-1.0. If the (extension) folder/folders does/do not exist,
it/they is/are created. If the report already exists in the same path, it is overwritten. The path
should be entered like this: /my/path. Note that, different as in other datasinks, ./my/path does
not work.

5.15 Google Drive

Google Drive OAuth2-authorized datasinks allow you to send and/or schedule reports to a given
directory in your Google Drive https://drive.google.com/ account.

For getting your “app key” and “secret key”, you have to create an app registration here: https:
//console.developers.google.com/ (Google API Console) and give it the appropriate API
permissions.

The “base root” path in the datasink definition, together with the “folder” path, determines the
base path of the datasink. The default folder/folders are also included, which can be overriden in
specific uses of this datasink, analogously to other datasink types.

Note that the base path must exist. If the (extension) folder/folders does/do not exist, it/they
is/are created. If the report already exists in the same path, it is overwritten. The path should be
entered like this: /my/path. Note that, different as in other datasinks, ./my/path does not work.

More information on this can be found here: https://developers.google.com/drive/api/v3/
about-sdk.

5.16 Box

Box OAuth2-authorized datasinks allow you to send and/or schedule reports to a given directory in
your Box Drive https://box.com/ account.

For getting your “app key” and “secret key”, you have to create an app registration here: https:
//app.box.com/developers/console (Box Developer Console) and give it the appropriate API
permissions.

The “base root” path in the datasink definition, together with the “folder” path, determines the
base path of the datasink. The default folder/folders are also included, which can be overriden in
specific uses of this datasink, analogously to other datasink types.

43

https://docs.microsoft.com/en-us/graph/api/resources/onedrive?view=graph-rest-1.0
https://docs.microsoft.com/en-us/graph/api/resources/onedrive?view=graph-rest-1.0
https://drive.google.com/
https://console.developers.google.com/
https://console.developers.google.com/
https://developers.google.com/drive/api/v3/about-sdk
https://developers.google.com/drive/api/v3/about-sdk
https://box.com/
https://app.box.com/developers/console
https://app.box.com/developers/console

5. Datasinks

Note that the base path must exist. If the (extension) folder/folders does/do not exist, it/they
is/are created. If the report already exists in the same path, it is overwritten. The path should be
entered like this: /my/path. Note that, different as in other datasinks, ./my/path does not work.

More information on this can be found here: https://developer.box.com/reference/.

44

https://developer.box.com/reference/

Chapter 6

File System

The ReportServer File system meets a variety of functions. First, it serves to file various files
and resources so as to use them, for instance, as a basis for datasources (e.g. CSV files), or as
resources for reports (e.g. images). In addition, a major part of ReportServer settings (e.g. the
mail server configuration) can be performed with configuration files that you will find in the file
system’s sub-directory etc. Furthermore, so-called ReportServer scripts can be filed in the file
system that cover a great number of varying cases of use. These scripts can serve as a basis for
datasources (script datasources) or for reports (script reports). They can, however, also provide
additional functionality, or be used to perform maintenance tasks.

The file system has a hierarchical structure, just like file systems of common operating systems.
You will find the file system in the Administration module under File system. The following object
types can be created in the File system tree:

Folder: Serve to structure files

File: Any file (e.g. image, text file, CSV, etc.)

Both objects share the usual attributes name and description. In addition, folders can be configured
for web access. This means that objects in these folders (including subfolders) can be accessed by
URL without prior authentication (i.e., permissions are not checked for accessing these objects).

After having selected a folder, in the right window above the Apply button you will find the
area marked Drop files here. Here you can quickly copy files from your local file system to the
ReportServer File system. Drag files, for instance, from your Windows Explorer or Mac OS Finder
to the marked area. As soon as the files have been uploaded they will be dis- played in the file tree.

If you create files in the file tree by using the context menu (right click on a folder), or you select
already existing files, you can enter a name and description as well as the Mime-type for the file.
Additionally, you will be given the current file size as well as a download link. By means of a form,
you can upload a new file to the server and update the currently stored file. Text files can directly
be edited in ReportServer. In the tree, click on the text file and then select the tab Edit file (next
to Properties).

47

6. File System

6.1 Configuration Files

ReportServer configuration files are located in the etc directory, following the Unix operating system
structure. Configuration files are in XML format and are marked with the file extension .cf by
default. A configuration file could be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<report>
<id>41390</id>

</report>
</configuration>

For further information on the individual configuration options refer to the ReportServer configuration
guide.

6.2 Filing of Scripts

By default ReportServer scripts are filed in the bin directory (this location can be changed; for
further information see the ReportServer configuration guide) with the file extension .rs or .groovy.
ReportServer scripts are written in the language Groovy (https://groovy-lang.org/). They are
a powerful tool to enhance ReportServer, to perform administrative tasks, or to generate complex
reports. Please observe that a user requires the Execute right to run scripts. The explanation of
ReportServer scripts in more detail would go beyond the scope of this manual. You will find a brief
introduction in Chapter 14 ReportServer Scripting. For a detailed introduction to ReportServer
scripts we refer to the separate scripting guide.

6.3 Accessing Resources by URL

You can access files in the ReportServer File system by URL. This facilitates the embedding of
images in reports. The appurtenant URL is:

http://SERVER/APPLICATIONFOLDER/reportserver/fileServerAccess?id=XX

Here, SERVER gives the server address (e.g. demo.raas.datenwerke.net), and APPLICATIONFOLDER
the installation path in your application server (e.g. Tomcat). The default setting is “reportserver”.
By using the property ID you can access certain files. In addition, you can use the following URL
attributes:

id ID of a file

path Path leading to a file, e.g. resources/images/img.jpg

thumbnail If the file is a MimeType image/png or image/jpeg, the image is automatically scaleable. The
thumbnail option activates the scaling mode for ReportServer.

twidth Gives the width of the resulting preview image.

Please observe that reading rights are required for a file by default (refer to Chapter 3 User and
Permission Management) to be able to access it by URL. This indicates in particular that a user

48

https://groovy-lang.org/
http://SERVER/APPLICATIONFOLDER/reportserver/fileServerAccess?id=XX
SERVER
demo.raas.datenwerke.net
APPLICATIONFOLDER

6.3. Accessing Resources by URL

must be logged in to the system. To fully share files you may place them in a folder where a tick is
set at Share folder for web access.

49

Chapter 7

Report Management

Reporting is a highly dynamic field. Data need to be consolidated, prepared and evaluated at
increasingly shorter intervals. Due to the communication overhead, these dynamics can, however,
only be met to a limited extent with the typical approach in reporting where a report is first specified
by the specialist department and then implemented by the IT department. ReportServer is designed
to get the responsibility just as well as the opportunities to create new, relevant information to
the greatest possible extent back to whom it concerns and where it is needed, but also where the
knowledge about how to generate data is available: To the specialists respectively to the ultimate
user.

ReportServer first distinguishes between (base) reports and variants. Base reports are comparable
to a shell. They define the basic data structure and, depending on the format, the design how to
present these data. In addition, they provide the users with the options that enable them to adapt
this data basis to their requirements. Depending on the report format, various options are here
available. However, variants represent reports which are fully configured by the user.They include the
necessary settings to execute the report or the schedule it. Users can save their configurations—the
variants—to assure prompt access to their data.

All report types supported by ReportServer have in common that they are configurable by setting
the so-called parameters. For instance, a parameter may be a simple text field where the user can
enter an invoice number, or a date range to limit a time span. The parameters applicable for a
report are invariably specified by the report designer/administrator.The users can select from the
parameter values and save them as a variant. Depending on the report type, the ultimate user is
given additional options to control the output of the report. We will discuss them more closely in
the following depiction of the single report types. Naturally, you will find a detailed description in
the user manual. The ultimate goal is to empower the users to gather the data required for their
task independently.

Of course, it must be ensured to document the reports in an audit-proof manner if they can
be adjusted by a user after a possible acceptance in the data warehouse. ReportServer here
supports you in two ways. First, ReportServer automatically creates detailed documentation for
each report/variant outlining all user defined settings. Then, history objects will be created for
any changes to objects. They enable to trace the type and time of a modification executed on an
object.

51

7. Report Management

7.1 Fundamentals

As with users and datasources, ReportServer manages reports in a hierarchical tree structure.
You will find it in the Administration modules under Report management. Report management
exclusively provides the administrative management of reports. By using TeamSpaces the users may
create their own view to report objects released to them. For further information on TeamSpaces
refer to the User manual.

As you are used to you may structure objects in folders. Apart from folders, there will be one object
per report type as well as variant objects. Variant objects will not be created in the tree itself but
automatically by ReportServer as soon as a user creates a new variant for a report. ReportServer
provides you with the following report types:

Dynamic list

The dynamic list shifts the major part of report logics to the ultimate user who can compile the data
relevant for it individually. Here users can draw from simple filters and complex aggregations up to
computed fields. In this respect, the dynamic list can be regarded as ad-hoc reporting. The user
may, of course, save all settings in a variant. The dynamic list is designed to be highly performant
when dealing with large data volumes. The dynamic list outputs data primarily as a table which
can be exported to Microsoft Excel just as well as to PDF, HTML or CSV. In addition, by using
templates data can directly be uploaded to pre-defined Excel spreadsheets, or transferred to any
XML dialects. We will look at the dynamic list from the administrator’s viewpoint in section The
Dynamic List. The description of the dynamic list from the user’s viewpoint will be given in the
User manual. The dynamic list is discussed in detail in Section 7.2.

Graphical Reports

The dynamic list supplies data in raw format, and therefore it is ideally suited for daily control. To
generate graphically sophisticated analyses, ReportServer supports reports in the JasperReports
and Eclipse BIRT report formats. These popular and open libraries enable to create reports with
elaborate graphics. We often refer to these as graphical reports. In addition to the open formats
BIRT and Jasper, ReportServer also provides support for the commercial SAP Crystal Reports
engine which similarly allows you to create pixel perfect reporting.

JasperReports

JasperReports Library (http://community.jaspersoft.com/) designed by JasperSoft is a powerful
report engine to generate graphical reports. Reports are defined in an XML dialect which will be
translated to Java Source Code for report execution. Apart from the function to directly generate
XML sources, JasperSoft provides the report designer IReports. It helps to create reports in the
style of WYSIWYG applications (what you see is what you get). Jas- perReports are particularly
suited to output reports in the PDF format (e.g. for pixel precise printing). However, Jasper reports
can be provided in other formats such as HTML or RTF. JasperReports are discussed in detail in
Section 7.4.

52

http://community.jaspersoft.com/

7.1. Fundamentals

Eclipse BIRT

Eclipse BIRT (http://www.eclipse.org/birt) is the second open report engine next to JasperRe-
ports. Actuate (http://www.birt-exchange.com/be/home/) takes the lead in further developing
Eclipse BIRT which offers functionalities comparable to JasperReports. BIRT is based on the
Eclipse platform (http://www.eclipse.org/) and includes a comprehensive designer for visualizing
reports. Just as well as with JasperReports, Eclipse BIRT defines reports in an own XML dialect
which transfers to an executable Java Code at report runtime. The primary output format for BIRT
reports is PDF as well. BIRT is discussed in detail in Section 7.5.

Crystal Reports

Crystal Reports is a commercial reporting engine developed by SAP AG (http://www.crystalreports.
com/) and hence not directly part of ReportServer. ReportServer, however, comes with everything
you need to run reports generated with Crystal Reports given that you have a Crystal license
allowing you to use SAP Crystal Reports for Java runtime components (or short, the Java Reporting
Component JRC). Similarly to Jasper and Birt the primary output format of Crystal reports is PDF.

Versions of the Report Engines

With every new release of ReportServer, the libraries in use will also be updated so that normally
the latest JasperReports and Eclipse BIRT versions will be integrated. The current versions are
given in the license documentation which is part of the download package. As JasperReports are
designed as a simple library, you can easily exchange it yourself by a current or an older version. To
do this, copy the corresponding .jar files to the ReportServer lib directory. Further information on
this you will also find in the ReportServer Configuration guide. Unfortunately, Eclipse BIRT is not
as easy to handle in this respect because it requires multiple libraries in specific versions. Therefore,
we advise you not to upgrade the BIRT engine on your own without any support.

Saiku Reports – Multi-dimensional Reporting

Saiku reports allow you to access Mondrian datasources (see Section 4.10). The user interface
is provided by Saiku (http://meteorite.bi/saiku) who created beautiful OLAP UI that we
adopted in ReportServer. Saiku reports are the preferred way if you want to access multi-dimensional
data that is organized with Mondrian.

JXLS Reports – Excel Reporting

JXLS (http://jxls.sourceforge.net/) is a template engine for Microsoft Excel. ReportServer
allows to use JXLS templates, for example, with dynamic lists such that users can directly insert
their data in a predefined Excel sheet (for further information have a look at the ReportServer User
guide). Besides being available as a template engine for ReportServer’s dynamic list, JXLS is also
available as a first class report object. In this form it provides further reporting capabilities, as you
can directly use SQL queries within your Excel templates. Both JXLS2 and the legacy JXLS1 are
supported in ReportServer.

53

http://www.eclipse.org/birt
http://www.birt-exchange.com/be/home/
http://www.eclipse.org/
http://www.crystalreports.com/
http://www.crystalreports.com/
http://meteorite.bi/saiku
http://jxls.sourceforge.net/

7. Report Management

Script Reports

Beside the dynamic list there is another native ReportServer report type, the script report. Script
reports are written in Groovy and offer full Java VM flexibility and functionality. They are primarily
used to generate dynamic analyses allowing user interaction. But they can also access the Re-
portServer object model, and therefore they are particularly suited for the reporting of warehouse
metadata as well as of ReportServer itself. An example for a meta report is a documentation report
which generates an up to date documentation for all kinds of reports.

In the following sections we will provide you with in-depth information on the four different report
types. Even if you intend to primarily work with the graphical report engines (Jasper or BIRT)
we recommend you to read the Dynamic list section as we will explain here some of the principle
techniques such as working with parameters. All of the following sections show a similar structure.
First, we describe the principle techniques and concepts on which the report engine is based. This
is not necessarily required for the creation and configuration of reports, and may be skipped on
first-time reading. In the next step, we will explain the single configuration options in detail. For
Jasper and BIRT we will additionally elaborate on the interoperability between ReportServer and
the report designers offered by the manufacturers.

Grid Editor Reports

The grid editor component allows users to change data within database tables. The grid editor is
backed by ReportServer scripts to define what data is loaded and how changed data is to be stored.
In that way it is a very flexible component when you want to provide a simple data editor for users.

7.2 The Dynamic List

The dynamic list is very easy to configure as compared to the graphical report engines BIRT and
Jasper. Basically, the administrator defines a table (which might be very concise at times) with the
basis data. From this table the users can then independently arrange their data of relevance. In
many cases the definition of a dynamic list only requires a single SQL query (provided the data basis
is stored in a relational database). By setting parameters you can provide the users with predefined
filter and configuration options.

To obtain highest possible efficiency, ReportServer relocates all filtering steps to the reference
database, if possible. If a datasource other than a relational database has been selected for your
report, the data will be buffered in an internal database as described in Section “Datasources”.
Basically, the execution of a dynamic list report is as follows. Proceeding on a basic SQL statement,
ReportServer constructs a complex SQL query considering all filter options set by the user. This
SQL statement will either be predefined by you if you have chosen a relational database as your
datasource, or will automatically be generated by ReportServer if the data are buffered in an internal
database. Resulting from this, there will be a few consequences with regard to the formulation of
your basis SQL statement that we want to discuss in the following.

If you have chosen the demo datasource (see Section ??), your base query could be as follows:

SELECT * FROM T_AGG_CUSTOMER

54

7.2. The Dynamic List

It would provide all processed customer data of the model company “1 to 87” (the imaginary
company behind our demo data) as a data basis for the dynamic list. The query assembled by
ReportServer could then be as follows (depending on the configuration of the variant):

SELECT * FROM
 (SELECT
 xx__rs_col_0,
 xx__rs_col_1,
 xx__rs_col_2,
 xx__rs_col_3,
 xx__rs_col_4,
 xx__rs_col_5
 FROM
 (SELECT
 *
 FROM
 (SELECT
 CUS_CONTACTFIRSTNAME AS xx__rs_col_0,
 CUS_CONTACTLASTNAME AS xx__rs_col_1,
 CUS_CUSTOMERNUMBER AS xx__rs_col_2,
 CUS_PHONE AS xx__rs_col_3,
 CUS_CITY AS xx__rs_col_4,
 CUS_POSTALCODE AS xx__rs_col_5
 FROM
 (SELECT
 *
 FROM
 T_AGG_CUSTOMER) colQry) filterQry
 WHERE
 xx__rs_col_4 IN ('Barcelona' , 'Auckland', 'Bern')) aliasQry) limitQry
LIMIT 50 OFFSET 0

Please consider that ReportServer will adapt the generated SQL source text to the database
used. In the given example the syntax LIMIT 50 OFFSET 0 is not generally applicable for all
databases.

In this example the user has chosen the columns

• CUS_CONTACTFIRSTNAME

• CUS_CONTACTLASTNAME

• CUS_CUSTOMERNUMBER

• CUS_PHONE

• CUS_CITY

• CUS_POSTALCODE

55

7. Report Management

and defined a simple inclusion filter on the CUS_CITY column.

You see here how ReportServer builds the SQL statement around the basic query SELECT * ⤦
 Ç FROM T_AGG_CUSTOMER. As a consequence for the formulation of the basic query, the syntax
has to allow to be used as inner SELECT statement. Here only the line limiting instructions such
as LIMIT and OFFSET basically provide a problem. Please observe that depending on the database
dialect used the formulation has to be adapted. Surely, some attention has also to be paid to
more complex basic queries. For example, if you wish to specify an aggregation (this is usually not
required as users can aggregate data by themselves), your query could be as follows:

SELECT SUM(CUS_CREDITLIMIT) FROM T_AGG_CUSTOMER GROUP BY OFF_CITY

Here the sum of the customers’ credit limit per location is defined. When executing the report,
ReportServer would translate the above query as follows (here an additional filter was added on
values greater than 4.000.000).

SELECT * FROM
 (SELECT
 xx__rs_col_0
 FROM
 (SELECT
 *
 FROM
 (SELECT
 SUM(CUS_CREDITLIMIT) AS xx__rs_col_0
 FROM
 (SELECT
 SUM(CUS_CREDITLIMIT)
 FROM
 T_AGG_CUSTOMER
 GROUP BY OFF_CITY) colQry) filterQry
 WHERE
 xx__rs_col_0 >= 4000000) aliasQry) limitQry
LIMIT 50 OFFSET 0

If you manually run the statements on a database you will see that the original statement is valid
whereas the one built by ReportServer will not be valid at this place. In line 4 ReportServer assigns
to column SUM(CUS_CREDITLIMIT) a unique (internal) name. However, the database interprets this
statement as a further summation. This means that an admissible attribute name should already
have been assigned to the aggregation in the basic query. In this case the basic query should have
been as follows:

SELECT SUM(CUS_CREDITLIMIT) AS SUMME FROM T_AGG_CUSTOMER GROUP BY OFF_CITY

ReportServer would then correctly translate the following query:

SELECT * FROM
 (SELECT
 xx__rs_col_0
 FROM
 (SELECT
 *
 FROM

56

7.2. The Dynamic List

 (SELECT
 SUMME AS xx__rs_col_0
 FROM
 (SELECT
 SUM(CUS_CREDITLIMIT) AS SUMME
 FROM
 T_AGG_CUSTOMER
 GROUP BY OFF_CITY) colQry) filterQry
 WHERE
 xx__rs_col_0 >= 4000000) aliasQry) limitQry
LIMIT 50 OFFSET 0

If you need to modify the query before it is being executed, take a look at the net.datenwerke.
rs.base.service.dbhelper.hooks.StatementModificationHook.

Common Table Expressions (CTEs)

Because of the same reasons as explained above, you have to take special care if you wish to use
Common Table Expressions (CTEs) together with dynamic lists. Refer to the following example in
MSSQL syntax

WITH USERS_CTE (username, firstname, lastname)
AS (
SELECT username, firstname, lastname from RS_USER
)
SELECT * from USERS_CTE

If you write this valid query into your dynamic list’s query, you will get an error. As explained above,
this error appears because of the query generated by ReportServer. In order to solve this problem,
you can mark the CTE expression as follows.

/*<rs:cte>*/
WITH USERS_CTE (username, firstname, lastname)
AS (
SELECT username, firstname, lastname from RS_USER
)
/*</rs:cte>*/
SELECT * from USERS_CTE

Variants of the Dynamic List

Using dynamic lists, users have far reaching options to design the report according to their needs.
In a first step, the users select a sub-set from the available report attributes (columns). This
sub-set forms the basis for their report. In the following steps, they can then specifically reduce the
data basis to the number they actually need for their analysis by setting various filter options. A
detailed description of all options would go beyond the scope of this instruction. Therefore, we
make reference to the User manual which details all options how to adapt a report by the user.

Output Formats of the Dynamic List

The underlying output format of the dynamic list is tabular.Therefore, the data can be exported
to Excel or CSV (comma separated value, http://en.wikipedia.org/wiki/Comma-separated_

57

net.datenwerke.rs.base.service.dbhelper.hooks.StatementModificationHook
net.datenwerke.rs.base.service.dbhelper.hooks.StatementModificationHook
http://en.wikipedia.org/wiki/Comma-separated_values
http://en.wikipedia.org/wiki/Comma-separated_values
http://en.wikipedia.org/wiki/Comma-separated_values

7. Report Management

values). In addition, when using dynamic lists ReportServer provides the possibility to export to
PDF and HTML.

Beside outputting the data in a simple tabular structure, users can upload them to predefined Excel
spreadsheets by means of templates (JXLS templates), transform them in any text format (velocity
templates), or issue them in any XML dialect (XLS templates). You will find a short introduction
to the various template languages in the User manual.

Configuring the Dynamic List

All reports have in common that you may assign a name and a description to them. Note that
these will be indexed for ReportServer’s search engine. In addition, you can assign a key to reports.
This key represents a unique (plain text) name for referencing the report, for instance, in URLs.

To define the data basis select a datasource and configure it (configuration depends on the
datasource type, refer to chapter 4). Normally, you will use data from relational databases (you can
use the demo datasource as an example which refers to the internal H2 database). To complete
the configuration, you have to enter an SQL query. In the following we will base our description
on a relational database serving as a datasource and only refer to other datasource types if the
configuration appears to be fundamentally different.

Based on the demo datasource, a report could provide, for instance, all data of the table
T_AGG_CUSTOMER (i.e., all processed data concerning the customers of the company “1 to 87”)
as described above. Here you use the query

SELECT * FROM T_AGG_CUSTOMER

Once the datasource is specified, the dynamic list is executable. To start executing it, double click
on the respective node in the tree. You will find a detailed explanation how to use the dynamic list
from the viewpoint of a user in the User manual.

By actuating the Execute button in the tool bar of the datasource configuration you can easily
test the currently entered query.

The Metadata Datasource

The optional metadata datasource serves to further define the report’s base data fields. If there
is no metadata datasource given, the users will only see the technical database name each when
selecting attributes/columns. By using the metadata datasource it is possible to enter an additional
plain text name and description per attribute. Further, the default column width in the dynamic list
preview can be set here (per attribute). ReportServer expects the datasource output to consist
of three or four columns, where the first one shows the technical column name, the second one
gives the appurtenant plain text name, the third one the appurtenant description, and the fourth
(optional) the appurtenant default column width in the dynamic list preview.

A metadata example will also be supplied with the demo data. The appurtenant query is:

SELECT column_name, default_alias, description FROM METADATA

58

http://en.wikipedia.org/wiki/Comma-separated_values
http://en.wikipedia.org/wiki/Comma-separated_values
http://en.wikipedia.org/wiki/Comma-separated_values
http://en.wikipedia.org/wiki/Comma-separated_values

7.2. The Dynamic List

Note that this query has only three columns. As mentioned above, the fourth one is optional
(default column width in the dynamic list preview).

The result of this call, for instance, will look as follows:

COLUMN_NAME DEFAULT_ALIAS DESCRIPTION

addressLine1 First line of the address

addressLine2 Second line of the address

amount Amount of the payment effected

buyPrice Purchase price

checkNumber Payment reference number

If you want to set the default column width in the dynamic list preview, you can write a similar
query analogous to:

SELECT column_name, default_alias, description, default_width FROM METADATA

The query would then result in e.g.:

COLUMN_NAME DEFAULT_ALIAS DESCRIPTION DEFAULT_WIDTH

addressLine1 First line of the address 100

addressLine2 Second line of the address 200

amount Amount of the payment effected 150

buyPrice Purchase price 50

checkNumber Payment reference number 100

Please note that the demo data does not include a default column width, as this is optional, so
the query above will not work with the demo data. If you need a default column width in your
datasource, create a similar query as the above in your metadata datasource definition.

The metadata datasource further allows you to link your dynamic list report to a URL. Details of
this can be found in the next section.

Linking Dynamic Lists to URLs

ReportServer allows you to link your dynamic lists to a (possibly external) URL. This may be very
practical if the link contains additional information of the record clicked on. Useful examples include
opening a new report based on a given id (e.g. by httpauthexport, refer to Section 7.11 for more
details), performing a Google search based on a given value, etc.

This is achieved in ReportServer by using the metadata datasource described in Section 7.2. Along
with the four columns described in Section 7.2, the metadata datasource query may contain a fifth
column for this purpose. Therefore, the fourth column (default column width in the dynamic list
preview) is required in this case although it is normally optional. Its value may be of course NULL if

59

7. Report Management

no default width is required.

An example query containing the five columns could be:

SELECT column_name, default_alias, description, default_width,
'linkto|http://URL/reportserver/httpauthexport?&user=myuser&id=20616&format=PDF& ⤦

 Ç p_id=$' + '{_value}' as link
FROM METADATA

Note that the string begins with a linkto| substring. In this case, ReportServer recognizes the rest
of the string as a link. The example link points to a PDF report which expects an “id” parameter.
You can use ${_value} for passing the value of the cell where the user right-clicked on to your URL.
The ${_value} is being concatenated in the query in order to avoid ReportServer handling it as a
parameter.

Also note that in order for the example to work, the user has to right-click a column in the dynamic
list preview containing the id to be passed as a parameter to the URL. The context menu will
contain a “Link to...” entry which opens a new window containing the URL for the given entry.

If you need to pass the value of another (visible) column to your URL, you can use the analogous
syntax, passing the column name or its alias. Thus, the string passed can be either the technical
name of the column or its given alias. In the example below, ${id} is being used to pass the value
of the “id” column. The value passed is independent of the cell right-clicked by the user.

SELECT column_name, default_alias, description, default_width,
'linkto|http://URL/reportserver/httpauthexport?&user=myuser&id=20616&format=PDF& ⤦

 Ç p_id=$' + '{id}' as link
FROM METADATA

Of course, you can also combine values passed. An example is given below.

SELECT column_name, default_alias, description, default_width,
'linkto|http://URL/reportserver/httpauthexport?&user=myuser&id=20616&format=PDF& ⤦

 Ç p_id=$' + '{id}' + '&p_name=$' + '{name}' as link
FROM METADATA

If you need further customization, you can always implement the hook net.datenwerke.rs.base.
client.reportengines.table.hooks.TableReportPreviewCellEnhancerHook. Refer to the
Scripting Manual for more information on implementing hooks.

Linking Geolocation Data in Dynamic Lists to Google Maps

Similarly to linking dynamic lists to URLs as described in Section 7.2, you can use the metadata
datasource to link geolocation data in a dynamic list to the corresponding Google Maps location.

For this purpose, the fifth column of the metadata query can again be used. An example is shown
below.

SELECT column_name, default_alias, description, default_width, column_geolocation
FROM METADATA

If the “column_geolocation” value is the string “geolocation”, the corresponding column will link to
Google Maps when right-clicking the value. The entry “Display on Map” will appear, which jumps to

60

net.datenwerke.rs.base.client.reportengines.table.hooks.TableReportPreviewCellEnhancerHook
net.datenwerke.rs.base.client.reportengines.table.hooks.TableReportPreviewCellEnhancerHook

7.2. The Dynamic List

the corresponding Google Maps location. E.g., if the value right-clicked on is “48.860294,2.338629”,
the linked location will be http://maps.google.de/?q=48.860294,2.338629, which corresponds
to the Louvre Museum in Paris.

If you need further customization, you can always implement the hook net.datenwerke.rs.base.
client.reportengines.table.hooks.TableReportPreviewCellEnhancerHook. Refer to the
Scripting Manual for more information on implementing hooks.

Customizing Dynamic Lists via Report Properties

There are several report properties (see Section 7.12) that can influence how the dynamic list. By
default, the preview view, as well as filter views count the number of rows in the results. When
working with very large database tables, this can become a performance bottleneck and you can
thus disable this behavior. Furthermore, you can control whether filters are, by default, in linked
mode, or not. The ReportServer standard is to have filters in linked mode, as this is the more
intuitive when using a dynamic list: filters will only show those results which are still valid results
given all the other filters. As this again may be a performance bottleneck, you can disable this
behavior via a report property.

Further, you can control if the parameters and their respective values should be exported along with
the dynamic list export. Even the complete configuration may be exported together with the dynamic
list export. This may be a huge help in order to being able to analyze thoroughly the values exported.
For this, you can use the properties output_parameters, output_complete_configuration, and
output_include_hidden_parameters. For more information, refer to Section 7.2.

For an overview over all report properties see Section 7.12.

Exporting Dynamic List Configuration

For exporting the parameter and filter configuration along with the dynamic list, you can set the
following report properties:

• output_parameters

• output_filters

• output_complete_configuration

• output_include_hidden_parameters

Please note that these report properties are only available in Enterprise Edition.

If only output_parameters is set to true, then only the “real” parameters are being printed out,
without separators, text, headers, etc. If output_complete_configuration is set, everything will be
printed out. This includes user information, report information, filters, pre-filters, report metadata,
global variables, separators, headers, parameters, etc. With other words, everything that you can
possibly include in the query.

61

http://maps.google.de/?q=48.860294,2.338629
net.datenwerke.rs.base.client.reportengines.table.hooks.TableReportPreviewCellEnhancerHook
net.datenwerke.rs.base.client.reportengines.table.hooks.TableReportPreviewCellEnhancerHook

7. Report Management

Both output_parameters and output_complete_configuration take output_include_hidden_parameters ⤦
 Ç into account. output_include_hidden_parameters controls whether hidden parameters are
being exported (defaults to false).

For exporting filters and pre-filters, you can use the output_filters variable. output_complete_configuration ⤦
 Ç includes filters and pre-filters as well.

Theming HTML and PDF Output

ReportServer Enterprise Edition allows to customize the PDF and HTML exports of dynamic lists
via the configuration files:

etc/dynamiclists/htmlexport.cf Configuration file customizing the HTML export

etc/dynamiclists/pdfexport.cf Configuration file customizing the PDF export

Following is a sample configuration for the HTML export:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <htmlexport>
 <!--
 <title>Some title</title>
 <head>Some additional content for the header</head>
 <script>Some Javascript</script>
 -->
 <style><![CDATA[
 @page {
 size: A4 landscape;
 @top-left {
 content: "${report.name}";
 font-family: DejaVu Sans, Sans-Serif;
 font-size: 8pt;
 }
 @top-right {
 content: "${now}";
 font-family: DejaVu Sans, Sans-Serif;
 font-size: 8pt;
 }
 @bottom-right {
 content: "${page} " counter(page) " ${of} " counter(pages);
 font-family: DejaVu Sans, Sans-Serif;
 font-size: 8pt;
 }
 }
]]>
 </style>
 <pre><![CDATA[
<div class="wrap">
<div class="header">

62

7.2. The Dynamic List

<div class="reportdata">
${report.name}
${now}
</div>
<div class="clear"></div>
</div>

<!-- output parameters before report data -->
<!-- Activate per report with output_parameters or output_complete_configuration ⤦

 Ç report property.
The property has to be set to true in order to activate. -->

<!-- <div class="parameters">
${parameterMapSimple}
</div> -->
<!-- end output parameters before report data -->

]]>
 </pre>
 <post><![CDATA[

<!-- output parameters after report data -->
<!-- Activate per report with output_parameters or output_complete_configuration ⤦

 Ç report property.
The property has to be set to true in order to activate. -->

<!-- <div class="parameters">
${parameterMapSimple}
</div> -->
<!-- end output parameters after report data -->

</div>
]]></post>
 </htmlexport>
</configuration>

The configuration consists of six high level elements

title The page title

head Additional content to go in the HTML head element

script Script elements

style Custom CSS

pre Custom HTML going before the table export

post Custom HTML going after the exported table

63

7. Report Management

Using the Formula Language

For all templates (i.e., pre, post, etc.) you have access to a ReportServer expression language
object (see Appendix A) with some predefined replacements:

columncount The number of columns

report The current report

user The current user

now The current date as a formatted string

page A localized text for page

of A localized text for of

parameterMap A map containing parameters

parameterMapSimple A user-friendly text representation of the parameter map

parameterSet The parameterSet object

One should be careful when working with parameters within the template, as not compiling templates
may cause unexpected errors.

7.3 Working with Parameters

By setting parameters you can specify additional configuration options for the users. First, we want
to discuss the basics of parameters based on a simple example. Then we will look more closely to
the various parameter types.

In the following we will again use the supplied demo data and set up a report on the orders of the
company “1 to 87”. Here we want to enable the users of the report to restrict the data basis to
certain customers. To do this, we will create a new dynamic list, select again the demo datasource
(refer to Chapter 4), and first apply the following basic query:

SELECT * FROM T_AGG_ORDER

Run the report in its actual state to get better acquainted with the demo data. In the following
we would like to introduce a parameter which enables the users to filter the report by customer
numbers. To do this, we return to Report management, select the report and switch to the
parameter tab (at the bottom). From the tool bar we add a new datasource parameter. The
parameter properties will open by double clicking on the icon of the parameter. We will assign the
following properties:

Name: Customer

Description: Selection of the customer to be displayed only.

Key P_CUSTNUM

Now we switch to the Specific properties of the parameter. Here we enter/activate the settings
valid for the parameter type (datasource parameter). datasource parameters draw their data from a
datasource. Here we enter the demo datasource again. ReportServer expects a result giving two

64

7.3. Working with Parameters

columns: the value column (this value can later be used in the query) and the display column (this
column will be shown to the user on selection). We place the following query.

SELECT DISTINCT
 OR_CUSTOMERNUMBER, CUS_CUSTOMERNAME
FROM
 T_AGG_ORDER
ORDER BY 2

You may keep the default values of the other settings. Apply the settings by clicking on Apply. If
you now run the report (double click in the tree) you will discover that the aspect displayed first
is the page Report parameters, and no longer Lists configuration. To set the parameter data,
double click into the corresponding data grid.

Now we added a parameter, and it can be configured by the users, but so far this parameter had no
effect on the underlying data volume. We still have to embed it in the base query of the report. To
do this, in Report management we return to the report settings and modify the query as follows:

SELECT * FROM T_AGG_ORDER WHERE $X{IN, OR_CUSTOMERNUMBER, P_CUSTNUM}

ReportServer interprets the syntax $X{IN, OR_CUSTOMERNUMBER, P_CUSTNUM} as an IN-Clause
where the field OR_CUSTOMERNUMBERmust correspond to a value selected in the parameter P_CUSTNUM ⤦

 Ç (key of the parameter). Translated to SQL, the query would be as follows:

SELECT
 *
FROM
 T_AGG_ORDER
WHERE OR_CUSTOMERNUMBER IN ('WERT_1','WERT_2','WERT_3')

Now, if you execute the report again, you will discover that when selecting the parameter it will
have the desired effect on the data volume. Please observe that if no parameter is selected, this
will by default translate in “All values are valid”.

If you are familiar with the JasperReports report engine, you will find out that you can use the
parameter syntax applied there for ReportServer dynamic list as well. We will discuss the syntax
more closely at a later point.

The Parameter Types

In the following we will first introduce the parameters supported by ReportServer individually and
then look at them in detail. ReportServer distinguishes two types of parameters. True parameters
are the ones that enable the user to make settings. So-called separators enable the administrator
to design the aspect report parameter, i.e. to add descriptive texts, etc.

The following parameters are available:

Text entry parameter Enables the user to make an entry to a text field

Date parameter Enables to enter a date or a time field

65

7. Report Management

Datasource parameter Enables to select from a number of possible pre-set values

User variable Enables to readout so-called user variables. User variables are discussed in detail in
Chapter 9.

File-selection parameter Allows users to upload files, which can then be used in the report creation
process. This is especially powerful in combination with script reports or custom export targets.

Script parameter Allows you to specify a parameter in HTML and JavaScript. This gives you the
flexibility to master almost any requirement.

The following separators are available:

Display text Enables to display text

Heading Enables to integrate a sub-heading

Separator Enables to set a division

In the following we will present a close look at the individual parameter type settings. Then we will
explain how to use parameters in datasources.

General Usage of Parameters

You add further parameters or separators to a report via the respective buttons in the tool bar
in tab Parameters. By clicking on the Remove button you can remove either the selected or all
report parameters. In addition, by using copy & paste you can add parameters to your current
report or to another one. To copy one or more parameters to the Clipboard, activate the respective
parameters and press CTRL+SHIFT+C (you will get a short notice about the successful move to the
Clipboard). To add parameters, first click on the parameters list (if there is no parameter available
click on the header), then press CTRL+SHIFT+V.

To edit the parameter properties, double click on the parameter icon, or activate the parameter and
select "Edit" from the tool bar. Parameter name and key can directly be edited in the list. To do
this click on the respective cell.

There are properties specific to each parameter type, but all parameters have the following properties
in common:

66

7.3. Working with Parameters

Name: Plain text name. Visible to the user.

Description: Description of the parameter. Visible to the user.

Key: A technically unique name. It is used to access the parameter from the datasource.

Hidden: Indicates whether users can see the parameter in the parameter page or not.

Editable: Indicates whether users are allowed to modify the parameter.

Mandatory Whether or not the parameter is mandatory.

Display inline: The option Display inline controls the layout of the parameter page. By default
parameters are displayed in a block. This means that line feed ends each parameter which
results in the parameters being displayed one below the other. If a parameter is displayed
inline, no line feed will be inserted. This enables to position the parameters next to each
other.

Label width: Allows to set a width for the label (i.e., name and description). The label width is inherited
by all following parameters unless it is overwritten there. To set the label width to auto
(which is the default) set it to -1

Parameter Instances

When a user allocates parameters and saves their configuration in a report variant, the parameter
settings made will be stored in parameter instances. If you modify a parameter subsequently, the
instances of the variants will not automatically change. This can be best explained by giving an
example:

We assume that we have created a multiple choice list parameter following the above example. The
appurtenant basic query was as follows:

SELECT * FROM T_AGG_ORDER WHERE $X{IN, OR_CUSTOMERNUMBER, P_CUSTNUM}

In the meantime, some variants have already been created, and the users have edited the variants’
parameter P_CUSTNUM. If you modify the parameter definition so as to select only one value, and
adapt the query as follows:

SELECT * FROM T_AGG_ORDER WHERE OR_CUSTOMERNUMBER = $P{P_CUSTNUM}

This would cause problems with the existing variants as here a list of values is given to the query
and not only a single value. In this case, by applying the button "Adapt instances", you could reset
the instances for the selected parameter to the initial value. However, this is not necessary for all
parameter modifications, and as a reset will lead to the loss of the user’s selection, ReportServer
will not automatically delete the instances with every parameter change. Let us assume you did not
set the parameter from multiple choice to single choice, but you only rearranged the query to offer
less selection options. Here it is not necessarily required to adapt the existing instances.

The Text Entry Parameter

With the text entry parameter you can provide users a simple text field to enter parameter values.
By changing the specific properties of the parameter you control the presentation of the text field
(height and width) by defining the type, and which type of object is to be returned. Beside the
java.lang.String (for a text object) you can choose from various number formats. In addition,

67

java.lang.String

7. Report Management

you can specify a default value for the parameter. If you want a NULL to be returned when the
parameter is left empty instead of an empty string, select the “return NULL if empty” option.

With the pattern field you can state a regular expression that will be checked when entered by the
user. If the entry is not made in the required format, an error message will be shown.

The Date Parameter

With the date parameter you can enable the users to select from a date or time field. As a default
value you can either use the current date and current time (Now as default), you can allocate
a fixed date, or you can determine the default value by using a ReportServer formula expression
(e.g. ${today.firstDay()} for the first day of the current month). For further information on the
ReportServer formula language refer to the User manual.

The Datasource Parameter

The datasource parameter provides you with the option to enable the user to choose from a
selection of pre-set values. The specified values will be provided by a datasource, giving it its name.
ReportServer expects a table with one or two columns to be returned from the datasource. Here, if
there is one column the values will be taken as display value and parameter value. If two columns
are returned, by default the first column is regarded as parameter value and the second one as
display value. If you configured a datasource with the following contents:

1 A
2 B
3 C
4 D

the user will be displayed “A,B,C,D”. When selecting A the value 1 would be passed on as a parameter
value.

Directly Entering the Value List

In some cases you may wish to enter the parameter values directly at the parameter without a
detour via the database. Here, the solution is a CSV datasource with an argument connector (refer
to “datasources”). This enables you to enter the values for the parameter directly at the parameter.
When generating the datasource please observe to deactivate the database cache. Please consider
as well that the first line of the CSV data hold the description of the data. To enter the above data
as CSV table proceed as follows

VALUE;DISPLAY
1;A
2;B
3;C
4;D

Subsequent Processing of Values

By using post-processing you can make complex changes to parameter data. Please note that
post-processing needs to be activated in the configuration (see ReportServer configuration guide).

68

7.3. Working with Parameters

Here you may give a Groovy script which will run for each data line. The current line will be given
to the script as data. To change the place of VALUE and DISPLAY you can use the following
simple script:

data.reverse()

ReportServer expects a list or an array to be returned. To exclude values you can return NULL.
Instead of returning a single value you can also return multiple values by means of a nested list. If
you return

[[1,'A'],[2,'B']]

this would, for instance, result in adding two data records.To better control the output, beside the
replacement data, the replacement cnt (an integer value) will be provided. isLast here indicates
whether the value currently processed is the last value. cnt counts the number of data records
processed beginning with 0.

Please consider that ReportServer will for consistency reasons ensure that there will be no duplicates
in the return. This means that when the data hold exactly the same value twice, only one will be
presented to the user for selection.

Security

Allowing users to execute Groovy bears a security risk. Thus, you should be careful when enabiling
this option, since this means that any user that is able to edit reports can potentially execute
arbitrary code.

Selection Mode

You can determine via the selection mode whether the user can select multiple values or only one.
Depending on the setting chosen, there are various views available to you. For multiple selection
options you can choose from the usual selection dialogue (pop up) and check boxes. The height
and width settings control the display of the selected values when selected from the dialogue. When
opting for the check boxes you can control the ranging of the check boxes via the settings layout,
packing mode and number per. Here the layout option controls the basic orientation, i.e. whether
the values will be entered first from top to bottom or from left to right. The "packing mode" setting
controls whether you rather want to opt for the number of columns or the number of packages.
Then with the number per option you control this number. The best way to explain this is by
giving you an example. Let us assume we can choose from 11 values. If we now select Column as
packing mode and 2 as number, the values will be arranged in two columns where the first one will
hold 6 values and the second one 5 values (with the layout setting top/bottom, left/right).

A G

B H

C I

D J

E K

F

69

7. Report Management

However, if you choose package as the packing mode, ReportServer will arrange columns of size 2.
Consequently, the objects would be arranged as follows:

A C E G I K

B D F H J

For the single selection setting you can draw from selection list (drop down), selection dialogue
(pop up), or radio buttons. If you take the last option, the layout will be controlled in the same way
as with multiple choice check boxes.

Typing

By typecasting you control the type of objects that ReportServer will attempt to return. Of course,
this must be based on the data available. If a value is to be returned as a date, you can specify the
available date format by the setting format. The syntax to be used here is explained under:

http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Default Values

By using the option default values you can determine the values selected by default. Please consider
here that for a single selection from a selection list (drop down) the convention applies that if there
is no determined default value, normally the first value will be selected.

File-Selection Parameter

The file selection parameter provides users with the means to select or upload one or more files
that can then go into the report generation process. This is especially useful, when working with
custom script reports or export targets that can make use of such additional information.

The main configuration of the file upload parameter is to specify where files are coming from. This
can either be from a TeamSpace or the internal file server, or via uploads. Additionally, you can
specify a minimum and maximum number of files, as well as allowed file extensions and a maximal
file size. Via the option “enable file download” you can control whether or not users can download
files that have been selected.

When working with script reports you can access files that were selected via the parameter
instance. In the following example we assume that we have a selection parameter with key
selectionParameterKey. The script shows the various ways to access the files. For further
information on scripting have a look at Chapter 14 and the ReportServer Scripting Guide.

import net.datenwerke.rs.base.ext.service.parameters.fileselection.SelectedParameterFile
import net.datenwerke.rs.base.ext.service.parameters.fileselection.UploadedParameterFile
import net.datenwerke.rs.core.service.reportmanager.entities.reports.Report;
import net.datenwerke.rs.fileserver.service.fileserver.entities.FileServerFile
import net.datenwerke.rs.scheduleasfile.service.scheduleasfile.entities.ExecutedReportFileReference;
import net.datenwerke.rs.tsreportarea.service.tsreportarea.entities.AbstractTsDiskNode
import net.datenwerke.rs.tsreportarea.service.tsreportarea.entities.TsDiskFolder;
import net.datenwerke.rs.tsreportarea.service.tsreportarea.entities.TsDiskReportReference;
import net.datenwerke.rs.tsreportarea.service.tsreportarea.entities.TsDiskRoot;

70

http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

7.3. Working with Parameters

/*
 * the parameter instance is if type net.datenwerke.rs.base.ext.service.parameters.fileselection. ⤦

 Ç FileSelectionParameterInstance
 * its value is a List of net.datenwerke.rs.base.ext.service.parameters.fileselection. ⤦

 Ç SelectedParameterFile
 */

List<SelectedParameterFile> files = parameterMap['selectionParameterKey'];

for(SelectedParameterFile file : files){

/*
 * A SelectedParameterFile contains an object from one of these sources
 *
 * Upload
 * Teamspace
 * Fileserver
 *
 */

/* there are some common properties */
String filename = file.getName();
byte[] fileContent = file.getContent(); // returns null for objects without content; variants, folders

/* and some for which you need to access the wrapped object */
Object fileObject = file.getSelectedFile();

/* when accessing the wrapped object you need to differentiate different types of content*/
if(fileObject instanceof UploadedParameterFile){
/* uploaded file */
UploadedParameterFile uploadedFile = fileObject;

/* has nothing but getContent() */
uploadedFile.getContent();

}else if(fileObject instanceof AbstractTsDiskNode){
/* selected from teamspace */
AbstractTsDiskNode tsObject = fileObject;

/* can be one of */
if(tsObject instanceof TsDiskRoot){
/* a teamspace root folder */
TsDiskRoot tsRoot = tsObject;
tsRoot.getName();

}else if(tsObject instanceof TsDiskFolder){
/* a teampsace folder */
TsDiskFolder tsFolder = tsObject;
tsFolder.getName();

}else if(tsObject instanceof ExecutedReportFileReference){
/* a reference to an executed report */
ExecutedReportFileReference tsFileRef = tsObject;

tsObject.getData()
tsObject.getDataContentType()
tsObject.getOutputFormat()
tsObject.getSize()

}else if(tsObject instanceof TsDiskReportReference){
/* a reference to a report/variant */
TsDiskReportReference tsReportRef = tsObject;
Report report = tsReportRef.getReport();

}

71

7. Report Management

}else if(fileObject instanceof FileServerFile){
/* selected from file server */

}
}

Script Parameter

The script parameter is a very flexible parameter that basically allows you to write custom HTML and
javascript. In order to communicate with ReportServer, ReportServer will call a special JavaScript
method that you need to implement and hand over the currently stored value, selected configuration
options as well as a callback which allows you to update the value.

When you create a scripting parameter you need to specify a ReportServer script which needs to
return an HTML page. You can either create a groovy script or directly write HTML and tell
ReportServer that the script is HTML by adding

#html

in the very first line. A script could hence look as follows

#html
<html>
 <head>
 </head>
 <body>
 <div>This is a Script Parameter. Click Me</div>
 </body>
</html>

What is missing from this script is the javascript method expected by ReportServer. For this we
add a custom method called initParameter. The initParameter method takes two arguments

params An object containing various configuration choices as well as the currently selected value.

callback A callback to update the selected value

The params object contains the following information

editable Reflects the option whether the parameter is supposed to be editable.

isDefault true, if the parameter was not yet set.

name The parameter’s name.

mandatory Whether or not the parameter is mandatory.

key The parameter’s key.

value The currently selected value.

defaultValue The specified default value.

The following is a fully functional example. If you click on the text the parameter value is updated.
If you then create a variant of the report, you should be prompted with the updated value. Also
note the validate method which is called once the user wants to close the parameter view.

72

7.3. Working with Parameters

#html
<html>
 <head>
 <script type="text/javascript">

var callback;
function initParameter(param, cb){
callback = cb;
alert("The current value is: " + param.value);

}

function setValue(value){
 alert("Updating the value to: " + value);
 callback(value);
}

function validate(){
return "The parameter is not valid!"

}
 </script>
 </head>
 <body>
 <div onclick="val = prompt('set new value:', ''); setValue(val);">This is a ⤦

 Ç Script Parameter. Click Me</div>
 </body>
</html>

As a further example, you can use a script parameter for installing a color picker which can be
then used in the SQL query as any other parameter. For this purpose, download the latest jscolor
javascript file from here: http://jscolor.com/. At the time of writing, the latest version was
2.0.5. Copy the downloaded jscolor.js file into this location: Fileserver Root/lib/jscolor/jscolor.js.
Check in the “Properties” tab the URL of this file in your installation. It should be something similar
to: http://localhost:8080/reportserver/reportserver/fileServerAccess?id=2189950.

Now you can create the script which will be the basis of your script parameter. We name this script
PalettePicker.groovy:

#html
<html>
 <head>
 <script type="text/javascript" src="http://localhost:8080/reportserver/ ⤦

 Ç reportserver/fileServerAccess?id=2189950"></script>
 <script type="text/javascript">

var callback;

function initParameter(param, cb){
callback = cb;
//alert("The current value is: " + param.defaultValue);
document.getElementById("mycolor").value = param.defaultValue;
document.getElementById("mycolor").style.backgroundColor = '#' + param. ⤦

 Ç defaultValue;
setValue(param.defaultValue);

73

http://jscolor.com/
http://localhost:8080/reportserver/reportserver/fileServerAccess?id=2189950

7. Report Management

}

function setValue(value){
//alert("Updating the value to: " + value);
callback(value);

}

 </script>
 </head>
 <body>
 <input id="mycolor" class="jscolor" onchange="setValue(this.value);">
 </body>
</html>

As you can see in the script, you install a color picker and use the default value for setting the initial
value and background color of the input field. The URL mentioned previously must be adapted to
your configuration:

<script type="text/javascript" src="http://localhost:8080/reportserver/ ⤦
 Ç reportserver/fileServerAccess?id=2189950"></script>

Finally, you can create the script parameter in your report and set the script field to point to your
PalettePicker.groovy script in your parameter’s “Specific Properties” dialog. Set your parameter’s
default value to e.g.: “FF0000” (without apostrophes). You can now use the color picker’s value in
your query as:

SELECT * FROM myTable where myField = ${mycolor}

Note that your parameter’s name must be set to “mycolor” for using this query.

This approach works for virtually all javascript libraries. Script arguments are a powerful tool for
extending ReportServer parameters to user-defined functionality.

Many thanks to Karolina Boboli for sending us this and allowing us to publish the script.

Setting Values

As described above, to set values from within the JavaScript code, you need to call the callback
object with the value to be set. Note, that ReportServer expects this value to be of type String.
Besides setting a basic string value, you can also return a JSON formatted string. For this, consider
the following setValue function:

function setValue(){
 var json = JSON.stringify({
 valA : 'A',
 valInt: 15
 });
 callback(json);
}

Assume that the script parameter has key scriptParam. If the parameter returned a JSON string,
then you can access each of the JSON properties via the replacement ParameterKey_PropertyName ⤦
 Ç . That is, you can access the integer value in the above example via ${scriptParam_valInt}

74

7.3. Working with Parameters

and the property valA via ${scriptParam_valInt}. The replacement ${scriptParam} would contain
the entire JSON formatted string.

Cascading Parameters

By using cascading parameters you can use parameters within parameters and thus nest parameters.
Source parameters can here be any parameters. At present, only the datasource parameter supports
the configuration by means of depending parameters. To do this, on the general configuration page
of the datasource parameter set the parameters on which the datasource parameter will depend. In
the following you can use them in the datasource configuration as describe below.

Using Parameters

Now, the specified parameters have to be used in the report definition so that they will take effect
in the report. How to do this varies with the report type and datasource. In the follow-through ing
we describe the parameter use in the dynamic list. How to use the parameters in Jasper BIRT or
script reports is given in each section dealing with the respective report type.

For the dynamic list, parameters are used in datasources. In the following we treat the individual
datasource types and introduce how parameters can influence data selection.

Parameters in Datasources: Relational Database

For relational databases, parameters are used in the appurtenant query. Here you have basically
two options to embed parameters in queries: either by query replacement or by direct replacement.
In the first case, the query will first be processed and the replacements will only be integrated
afterwards by verifying the data type. In the second case the replacement will be added prior
to processing and, therefore, this changes the query to be processed. Let us have a look at the
following sample query:

SELECT * FROM MY_TABLE WHERE ID = ?

In the example, an ID shall be given by a parameter. Now by replacing “?” in the query by a value it
would be ensured that the transferred value (say 1234) is of the correct data type (in the example
it is the same as the attribute ID), and only then the replacement will be made. In case of a direct
replacement the query would be changed to

SELECT * FROM MY_TABLE WHERE ID = 1234

and will be processed only afterwards. The result is that such a query can maliciously be changed
by skillfully selecting the parameter value (a so-called SQL injection attack http://en.wikipedia.
org/wiki/Sql_injection). Now, if a user enters for instance the value 1 OR 1=1 instead of a
valid ID, the query would be changed as follows:

SELECT * FROM MY_TABLE WHERE ID = 1 OR 1=1

By using these techniques it might be possible that a user can display values to which it should not
have access. Please consider that SQL injection examples often show the follow- ing attack: The
user selects string “1; DROP TABLE MY_TABLE;” which would transfer to the following statement
(respectively to the following two statements)

SELECT * FROM MY_TABLE WHERE ID = 1; DROP TABLE MY_TABLE;

75

http:// en.wikipedia.org/wiki/Sql_injection
http:// en.wikipedia.org/wiki/Sql_injection

7. Report Management

ReportServer will intercept this attack by allowing a query to only include exactly one statement. Still,
we want to emphasize that direct replacement represents a potential security risk, and, therefore,
should only be applied with particular caution.

In the following we present you the various possibilities how to integrate parameter values in a query.

$P{key}

A parameter referenced in this way will be converted according to the standard behaviour of the
parameter type and will be added to the query (query replacement) by applying the internal JDBC
parameter mechanism. Quotation marks and special escape characters will automatically be set at
the right place. $P{key} parameters can only be used as part of a WHERE condition. Our sample
query would therefore be as follows:

SELECT * FROM MY_TABLE WHERE ID = $P{key_ID}

where key_ID is the key of a parameter which returns a single value of the ID attribute type.

$P!{key}

Unlike the $P{} parameter reference, $P!{} parameter will directly be entered in the query by
omitting the JDBC parameter mechanism (direct replacement). This enables to use this parameter
type at positions in the query where no JDBC parameters are allowed. As demonstrated in the
example, a parameter can, for instance, provide part of a source table name. Please consider that
for this parameter type, quotation marks will not automatically be set or special characters escaped.
In addition, by directly interfering in the query you run the risk that your report will be an open gate
for SQL injection. Therefore, use this parameter type with caution. Example:

SELECT * FROM tblpfx_$P!{paramTblSuffix}

$X{function, COLUMN, key1 [, key2]}

The $X{} parameter reference facilitates the use of SQL clause functions and provides an injection
safe way of use. Furthermore it properly handles NULL values and is able to handle lists (for
example, for IN or NOTIN clauses).

Functions supported are:

$X{IN, column, parameterkey} : If all parameter values are other than NULL, an expression in
the form <column> IN (?, ?, .., ?) will be generated. If the list of values includes NULL
values as well as values other than NULL the generated expression is:

(<column> IS NULL OR <column> IN (?, ?, .., ?))
If all delivered values are NULL, the expression generated becomes <column> IS NULL.

$X{NOTIN, column, parameterkey} : If all parameter values are other than NULL an expression
in the form <column> NOT IN (?, ?, .., ?) will be generated. If the list of values includes
NULL values as well as values other than NULL, the generated expression is:

(<column> IS NOT NULL AND <column> NOT IN (?, ?, .., ?))
If all delivered values are NULL, the expression generated becomes <column> IS NOT NULL.

76

7.3. Working with Parameters

$X{EQUAL, column, parameterkey} : If the parameter value is other than NULL, an expression
in the form <column> = ? will be generated. If the parameter value is NULL, the generated
expression is <column> IS NULL.

$X{NOTEQUAL, column, parameterkey} : If the parameter value is other than NULL, an expression
in the form of <column> <> ? will be generated. If the parameter value is NULL, the expression
generated is <column> IS NOT NULL.

$X{LESS, column, parameterkey} : If the parameter value is other than NULL, an expression in
the form of <column> < ? will be generated. If the parameter value is NULL, an expression
always evaluating to true will be generated, e.g. 0=0.

$X{LESS], column, parameterkey} : If the parameter value is other than NULL, an expression
in the form of <column> <= ? will be generated. If the parameter value is NULL, an expression
always evaluating to true will be generated, e.g. 0=0.

$X{GREATER, column, parameterkey} : If the parameter value is other than NULL, an expression
in the form of <column> > ? will be generated. If the parameter value is NULL, an expression
always evaluating to true will be generated, e.g. 0=0.

$X{[GREATER, column, parameterkey} : If the parameter value is other than NULL, an expression
in the form of column >= ? will be generated. If the parameter value is NULL, an expression
always evaluating to true will be generated, e.g. 0=0.

$X{BETWEEN, column, lowerParameterkey, upperParameterkey} : If both parameter values
are other than NULL, an expression in the form of (<column> >? AND column < ?) will be
generated. If one of the two parameters is NULL, it will only be compared with the other
parameter, the then generated expression will be <column> > ? or <column> < ?. If both
parameter values are NULL, an expression always evaluating to true will be generated, e.g.
0=0.

$X{[BETWEEN, column, lowerParameterkey, upperParameterKey} : If both parameter values
are other than NULL, an expression in the form of (<column> >= ? AND column <?) will be
generated. If one of the two parameters is NULL, it will only be compared with the other
parameter, the then generated expression will be <column> >= ? or <column> < ?. If both
parameter values are NULL, an expression always evaluating to true will be generated, e.g.
0=0.

$X{BETWEEN], column, lowerParameterkey, upperParameterKey} : If both parameter values
are other than NULL, an expression in the form of <column> > ? AND <column> <= ?) will be
generated. If one of the two parameters is NULL, it will only be compared with the other
parameter, the then generated expression will be <column> > ? or <column> <= ?. If both
parameter values are NULL, an expression always evaluating to true will be generated, e.g.
0=0.

$X{[BETWEEN], column, lowerParameterkey, upperParameterKey} If both parameter values
are other than NULL, an expression in the form of (<column> >= ? AND column <=?) will be
generated. If one of the two parameters is NULL, it will only be compared with the other
parameter, the then generated expression will be <column> > =? or <column> <= ?. If both
parameter values are NULL, an expression always evaluating to true will be generated, e.g.
0=0.

77

7. Report Management

Parameters referenced by $X{} will also be added to the actual query via the standard JDBC
parameter mechanism, they also include correct quoting and escaping just like $P{} parameter
references, but they can also only be used in WHERE clauses.

The advantage of using $X{} parameter references over absolute $P{} parameters is the correct
processing of parameters of the value NULL.

${key}, or $!{key}

Beside the $P, $P! and $X replacements that we have already discussed, you are provided with the
${} and $!{} options to integrate parameters by using ReportServer ${} formula expressions. The
exclamation mark effects the avoidance of the parameter mechanism (direct replacement) as it is
the case with the $P!{} parameter.

The ReportServer ${} formula language builds on the Java-Unified-Expression-Language (http:
//juel.sourceforge.net/, https://www.jcp.org/en/jsr/detail?id=245 and http://www.
oracle.com/technetwork/java/unifiedel-139263.html) and enables you to run simple opera-
tions as for instance date arithmetic, etc. based on the parameter values. Here, for each parameter
the following replacements will be provided.

key Allows to access the parameter value in the form as it was inserted in the query by entering
$P{key}.

_key Enables to access the Java object lying below the parameter instance (a sub-class
of net.datenwerke.rs.core.service.parameters.entities.ParameterInstance which is
designed to save the values selected by the user). Here, each parameter type can define differing
functions to be executed on the parameter. The resulting values will then be entered to the
query in the correct data type and, if applicable, in quotation marks.

__key Enables to access the parameter definition object (a sub-class of net.datenwerke.rs.core.
service.parameters.entities.ParameterDefinition which is designed to save the parame-
ter settings). This enables to access, for instance, the name or other metadata of the parameter.

For further information on the ${} formula language refer to Appendix A as well as to the User
manual.

Parameters in Datasources: Mondrian Schema

For Saiku Reports you can use parameters in the SQL tag of the Mondrian schema query as
described for relational databases.

Parameters in Datasources: CSV List

For CSV lists you can use parameters in the Wrapper query as described for relational databases.

Parameters in Datasources: Script Datasources

For script datasources you can use parameters in the Wrapper query as described for relational
databases. In addition, you can use parameters with the ${} Syntax in the script arguments.

78

http://juel.sourceforge.net/
http://juel.sourceforge.net/
https://www.jcp.org/en/jsr/detail?id=245
http://www.oracle.com/technetwork/java/unifiedel-139263.html
http://www.oracle.com/technetwork/java/unifiedel-139263.html
net.datenwerke.rs.core.service.parameters.entities.ParameterInstance
net.datenwerke.rs.core.service.parameters.entities.ParameterDefinition
net.datenwerke.rs.core.service.parameters.entities.ParameterDefinition

7.3. Working with Parameters

Special Parameters

In addition to the parameters defined per report, ReportServer adds a few special parameters to the
parameter set of each report. These special parameters enable the report designer to access special
properties.

Current User

The properties of the current user can be called up by using ${_RS_USER.xx}, as a substitute
getFirstname(), getLastname(), getTitle(), getUsername(), getEmail(), getId() can be used.

Additionally, the $P, or $P! syntax can be used. Here, the following replacements are available.

• _RS_USER_FIRSTNAME

• _RS_USER_LASTNAME

• _RS_USER_TITLE

• _RS_USER_USERNAME

• _RS_USER_EMAIL

• _RS_USER_ID

Current Report

The properties of the current report can be accessed by ${_RS_REPORT.xx}, and as methods you
can access getName(), getDescription(), getKey(), getId(), and isVariant().

Additionally, the $P, or $P! syntax can be used. Here, the following replacements are available.

• _RS_REPORT_NAME

• _RS_REPORT_DESCRIPTION

• _RS_REPORT_KEY

• _RS_REPORT_ID

Locale

You can access the system’s default locale as well as the locale of the current user via the
replacements

• _RS_LOCALE_SYS

• _RS_LOCALE_USER

79

7. Report Management

The following allows you to access the complete locale which is used, e.g. in Jasper reports, for
localization.

• _RS_LOCALE

Global Constants

Values defined as global constants may be used in queries in the same way as parameters. For
further information on this refer to Chapter 8 Global Constants.

Report Metadata

Metadata which were defined at the report can be used by means of the parameter syntax. For
further information on this refer to Section 7.13 Report Metadata.

7.4 JasperReports

ReportServer supports the creation of graphical reports by using the OpenSource library Jasper-
Reports Library (http://www.jaspersoft.com). It is primarily designed to specify pixel perfect
reports to directly print them, or to export them as a PDF at a later time. In Jasper re- ports,
reports are defined in a specific XML dialect (JRXML). Reports can be directly written by using a
text editor, however, in practice reports are mostly drawn up by using the open report designers
IReports (http://community.jaspersoft.com/project/ireport-designer).

A JasperReport always consists of exactly one master report and one or several sub-reports. There
is an XML file for the master report and for each sub-report with the extension .jrxml. These files
are required to embed the report in ReportServer.

For further information on the creation of reports by using JasperReports refer to the relevant
documentation of JasperSoft (http://community.jaspersoft.com/documentation).

To embed Jasper reports in ReportServer switch to the Report management and create a Jasper
report in a folder. As with dynamic lists, in the following dialogue you can give a name and a
description to the report as well as a unique key to call up the report by URL, for instance.

To complete the configuration you have to upload the master report (i.e. the corresponding .jrxml
file) as well as all sub-reports.You can create sub-reports either by the Add sub-report button, or
by dragging and dropping it to the respective window.

During report execution, sub-reports will be loaded exclusively via the subreport’s name; possible
path information will be ignored. Therefore, it doesn’t matter how you locally organized the files
belonging to a report, you need not adapt them in order to use them in ReportServer. However,
you must ensure that no two sub-reports have the same name. Conversely, however, you note that
ReportServer never loads sub-reports from the local server file system. Accordingly, all sub-reports
always have to be registered together with the master report. Furthermore, it is not possible to
share sub-reports between several reports.

80

http://www.jaspersoft.com
http://community.jaspersoft.com/project/ireport-designer
http://community.jaspersoft.com/documentation

7.5. Eclipse Birt

Finally, you have to assign a datasource to the report. Here, you can exclusively draw from relational
databases as the source of your data. In ReportServer there is no need to enter queries as you do
with dynamic lists for they have already been included in the .jrxml files.

Just like dynamic lists, Jasper reports can be controlled by parameters. They will be created in
the reports themselves (for detailed information refer to JasperReports/Ireport Ultimate Guides
http://community.jaspersoft.com/documentation). In ReportServer you have to additionally
configure all parameters entered in the report by the parameter management (tab at the bottom of
the screen). Here, ReportServer will support you by automatically creating parameters from the
master report. This function can be activated via the Suggest parameter button in the tool bar.
We note that the automatic extraction of parameters is rudimentary and for may need manual
adjustments for more complex parameter settings. The configuration of the parameters is otherwise
identical to the configuration of dynamic list parameters.

Unformatted Excel Output

JasperReports attempts to present pixel perfect reports in all output formats.As a result, when
outputting it to Excel they are usually nicely made up, however, numbers will not appear as such
but as text, this complicates further data processing unnecessarily. Here, ReportServer provides the
option to add an additional datasource to a Jasper report. If this function is activated you will be
offered the additional output format Excel (unformatted) when executing the report. Here the
ResultSet of the datasource execution will be presented as an Excel file.

7.5 Eclipse Birt

Eclipse BIRT is a reporting system to generate pixel perfect reports in diverse output formats. A
BIRT report is defined in form of an XML document. For the creation and editing of reports usually
the BIRT Report Designer is used which simplifies your draft report by a graphical presentation.
Some of the sample reports realized in Eclipse BIRT are given in the demo data supplied with
ReportServer as well as in the annex. For further information on Eclipse BIRT refer to http:
//www.eclipse.org/birt/.

Apart from the XML documents defining the actual report, BIRT reports can additionally include
resource bundles and library files. These will be stored in a specifically identified folder in the file
server separate from the actual report.

To create a new BIRT report in ReportServer, proceed as follows. Switch to the Administration
module and then to the section Report management. From the context menu of a folder you create
a new BIRT report. The configuration mask presents the same fields as all other report types do
and allows to enter a name, description and key. In addition to these data, it is required to upload
the Rpt-design-file of the report.

Possibly available report libraries or resource bundles need to be copied to a folder in ReportServer’
internal file system. Which folder is controlled by the configuration file etc/reportengines/
reportengines.cf. For further information on this refer to the ReportServer configuration guide.

Finally, you may select the datasource to be used. If a datasource is provided in ReportServer, it

81

http://community.jaspersoft.com/documentation
http://www.eclipse.org/birt/
http://www.eclipse.org/birt/

7. Report Management

will be used instead of a datasource possibly defined in the report itself. But if you wish to use the
datasource given in the report, you may not select a datasource in ReportServer.

Similarly to parameters in JasperReports, parameters are defined directly in Eclipse Birt, but have
to additionally be specified within ReportServer. ReportServer supports you by trying to extract
parameter settings from your report. This will, however, only capture basic parameters and for
more sophisticated parameter settings (for example cascading parameters), manual adjustments
will be necessary.

Birt allows to specify datasets directly within the report. Theses data sets are often used as data
basis for parameters. ReportServer allows to use these data sets as ReportServer datasources. For
further information see Chapter 4 (Datasources).

7.6 SAP Crystal Reports

ReportServer comes with a basic support for SAP Crystal Reports1 SAP Crystal Reports is the
only proprietary reporting component supported by ReportServer and thus, we are not allowed to
ship the necessary libraries with the ReportServer release. If you do have a proper Crystal Reports
license you are, however, good to go and in the following we describe the necessary steps to work
with Crystal from ReportServer.

Prepare ReportServer for Crystal

In order to use Crystal Reports with ReportServer you must first install the SAP Crystal Re-
ports for Java runtime components (short, the Java Reporting Component (JRC)). You’ll find
these in the SAP website. You may have to register here: https://www.sap.com/cmp/td/
sap-crystal-reports-eclipse-trial.html and then click on the “Runtime libraries” link. Down-
load the there located archive (around 67 MB). At the time of writing the version available is
CR4ERL27_0-80004572. Unzip the archive and locate the lib directory. This includes all the
additional libraries you have to install to get going with Crystal Reports. The following jars are
needed:

• com.azalea.ufl.barcode.1.0.jar

• commons-configuration-1.2.jar

• commons-lang-2.1.jar

• CrystalCommon2.jar

• CrystalReportsRuntime.jar

• cvom.jar

• DatabaseConnectors.jar

• icu4j.jar

1http://www.crystalreports.com/

82

https://www.sap.com/cmp/td/sap-crystal-reports-eclipse-trial.html
https://www.sap.com/cmp/td/sap-crystal-reports-eclipse-trial.html
http://www.crystalreports.com/

7.6. SAP Crystal Reports

• jai_imageio.jar

• JDBInterface.jar

• jrcerom.jar

• keycodeDecoder.jar

• logging.jar

• pfjgraphics.jar

• QueryBuilder.jar

• webreporting-jsf.jar

• webreporting.jar

• XMLConnector.jar

• xpp3.jar

That is, all jars except some commons-*.jar and the log4j*.jar. Note that these should not be
included as ReportServer already ships with newer versions of these components. Copy the above
mentioned jars to the ReportServer WEB-INF/lib directory and start ReportServer.

Since ReportServer contains log4j libraries as of 4.3.0 (and newer versions of 4.1.0), you need
the log4j adapter (log4j-1.2-api), available here: https://logging.apache.org/log4j/2.x/
log4j-1.2-api/index.html. More information can be found here: https://logging.apache.
org/log4j/log4j-2.14.1/manual/compatibility.html

Regarding this critical security issue: CVE-2021-44228. Crystal, on its current version CR4ERL27_0-
80004572, is affected. For avoiding using the affected Crystal log4j libraries, use the log4j
adapter (log4j-1.2-api) as described above. Please refer to this for more information: https:
//forum.reportserver.net/viewtopic.php?id=2926

Install Microsoft’s TrueType core fonts on a Linux-Based ReportServer Installation

If your ReportServer is installed in a Linux environment, you have to install Microsoft’s TrueType
core fonts in order to run Crystal reports: http://corefonts.sourceforge.net/.

If your Linux distribution is based on Debian (this is the case with the Bitnami packages), you can
run the following commands for installing the MS TrueType core fonts:

echo "deb http://deb.debian.org/debian buster contrib" >> /etc/apt/sources.list
apt-get update && apt-get install ttf-mscorefonts-installer
ln -s /usr/share/fonts/truetype/msttcorefonts /opt/bitnami/java/lib/fonts

The above should be run by a user with sudo/root permissions.

Note that the above applies for the Bitnami containers, VMs and cloud images. In case you use the
Bitnami Linux Linux installer to install the application in your own server, the installation directory

83

https://logging.apache.org/log4j/2.x/log4j-1.2-api/index.html
https://logging.apache.org/log4j/2.x/log4j-1.2-api/index.html
https://logging.apache.org/log4j/log4j-2.14.1/manual/compatibility.html
https://logging.apache.org/log4j/log4j-2.14.1/manual/compatibility.html
https://forum.reportserver.net/viewtopic.php?id=2926
https://forum.reportserver.net/viewtopic.php?id=2926
http://corefonts.sourceforge.net/

7. Report Management

might be different (/opt/reportserverenterprise-VERSION by default). In this case, you’ll need to
create the symlink using a similar command as the following example:

ln -s /usr/share/fonts/truetype/msttcorefonts /opt/reportserverenterprise- ⤦
 Ç 4.0.0.6055-0/java/lib/fonts

Of course, if a different installation directory was set, you need to adapt the command to your
specific installation.

Depending on your Linux distribution, you may also have to check the following directory:

/usr/lib/jvm/default-jvm/jre/lib/fonts

When you have successfully installed the ttf-mscorefonts package, you will be able to run Crystal
reports on a Linux-based environment.

Use Crystal Reports

Reports for Crystal Reports come in the .rpt file format. All that is needed to configure a Crystal
report in ReportServer is to upload the corresponding .rpt-file. Similarly to Birt, you can either
configure a datasource via the interface or leave it open in which case Crystal will use the datasource
configured within the report.

Example use:

Either use your Crystal Reports designer to patch up a small demo report or simply download a demo
report here http://scn.sap.com/docs/DOC-6922 (click on View Document for the download to
start). If you downloaded the demo report, unzip the archive and you’ll find a report file called
jrc_view_report.rpt.

Log into ReportServer and go to the report management area in the administration module. Create
a new “Crystal Report” (right click on a folder) fill in some dummy properties and select the
jrc_view_report.rpt file for upload.

7.7 Saiku / Mondrian Reports

Saiku reports allow you to generate multi-dimensional OLAP style reports. The name Saiku
stems from the beautiful open source user interface for Mondrian called Saiku (https://github.
com/OSBI/saiku) that we use to display such OLAP reports. For an introduction to OLAP and
Mondrian we refer to the Mondrian documentation available online at http://mondrian.pentaho.
com/documentation.

Saiku reports are easily configurable once you have your Mondrian datasource (see Section 4.10).
A Mondrian datasource defines one or more cubes. A Saiku report takes a Mondrian datasource as
datasource and you additionally select the cube the report should use. This is already everything
you need to use OLAP with ReportServer. For an introduction to the OLAP UI we refer to the
ReportServer user guide.

84

http://scn.sap.com/docs/DOC-6922
https://github.com/OSBI/saiku
https://github.com/OSBI/saiku
http://mondrian.pentaho.com/documentation
http://mondrian.pentaho.com/documentation

7.8. JXLS Reports

7.8 JXLS Reports

JXLS (http://jxls.sourceforge.net) is a templating engine for Microsoft Excel and can be
used together with the Dynamic List in order for users to export data into a predefined Excel
spreadsheet (see the ReportServer User Guide). JXLS can, however, also be used as a first class
report type which offers some advantage over the use as a Dynamic List templating engine: In
particular you can define SQL queries directly from within the template and work with parameters.
In order to define a JXLS report, all that is needed in terms of configuration is an Excel file which
serves as the template and a datasource which can be accessed from within the template. In
addition as with any other report type you can specify parameters that can also be accessed from
within the template.
JXLS is available in two different versions in ReportServer: the current JXLS2 version and a legacy,
JXLS1 version. We will discuss both in the corresponding sections below.

JXLS2

In JXLS2 (http://jxls.sourceforge.net), you define the JXLS2 commands via Excel comments.
The JXLS2 engine parses these comments and transforms the template accordingly. We will first
explain some JXLS2 concepts and then we will show some examples to make it work together with
ReportServer. For a complete JXLS2 documentation refer to http://jxls.sourceforge.net/.

You can find JXLS examples in ReportServer here: https://github.com/infofabrik/reportserver-samples/
tree/main/src/net/datenwerke/rs/samples/templates/jxls.

Note that you can export dynamic lists into JXLS templates as of ReportServer 3.4.0. This
functionality may help you with manual JXLS template creation, since manual creation may
be cumbersome in some cases. Many thanks to Karolina Boboli for sending us this script and
allowing us to use it.

XLS Area

A XLS area represents a rectangular area in an Excel file which needs to be transformed. This
basically defines the boundaries of your JXLS2 template in your Excel file. Each XLS Area may
have a list of transformation commands associated with it and a set of nested child areas.

Constructing a XLS Area

You can use a special markup in your Excel template to construct a XLS area. The markup should
be placed into an Excel comment in the first cell of the area. Its syntax is:

jx:area(lastCell = "<AREA_LAST_CELL>")

where <AREA_LAST_CELL> is the last cell of the defined area.

This markup defines a top-level area start-
ing in the cell containing the markup com-
ment and ending in the <AREA_LAST_CELL> ⤦
 Ç cell. Refer to the following example (http:

85

http://jxls.sourceforge.net
http://jxls.sourceforge.net
http://jxls.sourceforge.net/
https://github.com/infofabrik/reportserver-samples/tree/main/src/net/datenwerke/rs/samples/templates/jxls
https://github.com/infofabrik/reportserver-samples/tree/main/src/net/datenwerke/rs/samples/templates/jxls
http://jxls.sourceforge.net/samples/object_collection.html
http://jxls.sourceforge.net/samples/object_collection.html
http://jxls.sourceforge.net/samples/object_collection.html

7. Report Management

//jxls.sourceforge.net/samples/object_collection.
html):

The XLS area is defined in a comment in the
A1 cell as

jx:area(lastCell="D4")

In the example we have an area covering the A1:D4 cell range.

Command Markup

A command represents a transformation action on a single or on multiple XlsAreas. It should be
defined inside the boundaries of an XlsArea:

jx:<command_name>(attr1='val1' attr2='val2' ... attrN='valN' lastCell=<last_cell> ⤦
 Ç areas=["<command_area1>", "<command_area2", ... "<command_areaN>"])

Example commands include the following:

• each

• if

• image

attr1, attr2,..., attrN are the command specific attributes.

<last_cell> defines the bottom-right cell of the command body area, analogously to the XLS area.

<command_area1>, <command_area2>, ... <command_areaN> - define XLS areas to be passed to the
command as parameter.

Note that in a single cell comment you can define multiple commands. For example, in a single cell
comment, you can have the following:

jx:each(items="department.staff", var="employee", lastCell="F8")
jx:if(condition="employee.payment <= 2000", lastCell="F8", areas=["A8:F8","A13: ⤦

 Ç F13"])

Consider the following example.

jx:area(lastCell="B1")
jx:each(items="data" var="customer" lastCell="B1")

${customer.cus_customername} | ${customer.cus_phone}

The cell A1 contains an Excel comment with
the text jx:area(lastCell="B1"). It defines
the boundaries of our template to be A1:B1. It
also contains a Jxls Each-Command with the
following text: jx:each(items="data" var ⤦

 Ç ="customer" lastCell="B1"). The Each-Command will iterate the collection of objects in the

86

http://jxls.sourceforge.net/samples/object_collection.html
http://jxls.sourceforge.net/samples/object_collection.html
http://jxls.sourceforge.net/samples/object_collection.html
http://jxls.sourceforge.net/samples/object_collection.html
http://jxls.sourceforge.net/samples/object_collection.html

7.8. JXLS Reports

“data” collection and print the corresponding information. The body area of the Each-Command is
A1:B1 (defined by the lastCell attribute), which means that the cells will be cloned and processed
with each new Customer object in the context.
To access an individual attribute you can use customer.colname, where “customer” is the variable
bound to the current data row and “colname” is the name of the attribute.

When used as a template for the dynamic list (refer to the chapter on the Dynamic List in the User
Guide), the “data” variable contains the data selected by the dynamic list.

Note that you have to enter the fields in lower case so that these are correctly mapped by the JXLS
engine.

When used as a first-class report type you need
to select the data from a sql datasource. For
this purpose, you can use the object jdbc ⤦
 Ç .query inside the items attribute which
provides access to the underlying datasource.
Here, we select two fields from the table T_AGG_CUSTOMER.

jx:area(lastCell="B2")
jx:each(items="jdbc.query('select CUS_CUSTOMERNAME name, CUS_PHONE phone FROM ⤦

 Ç T_AGG_CUSTOMER')" var="customer" lastCell="B2")

${customer.name} | ${customer.phone}

In order to use parameters within queries, you
can use the standard syntax for parameters in
the query described in Section 7.3. This is best
understood with an example: Here, we assume
that you previously created a parameter with
key “parameterKey”. You can also access parameters via the parameters object. Again, assuming
that there is a parameter with key ‘parameterKey”, you could access the parameters value via

${parameters.parameterKey}

jx:area(lastCell="B2")
jx:each(items="jdbc.query('SELECT CUS_CUSTOMERNAME name, CUS_PHONE phone FROM T_AGG_CUSTOMER WHERE ⤦

 Ç CUS_CUSTOMERNAME = ${parameterKey}')" var="customer" lastCell="B2")

Name | Phone
${customer.name} | ${customer.phone}

Following is a complete example, which works
for the demo data that is shipped with Report-
Server. It shows a very simple employee report
showing some basic information of the employee
and the customers served by the employee. The
report uses a single parameter with key “em-
ployee” which is assumed to hold an employee number.

jx:area(lastCell="C10")
jx:each(items="jdbc.query('SELECT EMP_FIRSTNAME as firstname, EMP_LASTNAME as lastname FROM ⤦

 Ç T_AGG_EMPLOYEE WHERE EMP_EMPLOYEENUMBER=${employee}')" var="employee" lastCell="B3")

87

7. Report Management

jx:each(items="jdbc.query('SELECT CUS_CUSTOMERNAME as name, CUS_CUSTOMERNUMBER as num, Y_VOLUME as ⤦
 Ç volume FROM T_AGG_CUSTOMER WHERE EMP_EMPLOYEENUMBER=${employee}')" var="customer" lastCell=" ⤦
 Ç C8")

Employee Number: | ${parameters.employee}
First name: | ${employee.firstname}
Last name: | ${employee.lastname}

List of Customers

Customer Name | Customer Number | Volume
${customer.name} | ${customer.num} | ${customer.volume}
TOTAL: | =SUM(C8)

A full documentation of the possibilities offered by JXLS2 is out of scope of this documentation,
and we refer the interested reader to the official JXLS documentation available on http://jxls.
sourceforge.net.

7.9 Script Reports

In this section we give you a short introduction to script reports. A detailed documentation on
scripts and script reports will be given in the ReportServer scripting guide. This section builds upon
the introduction of scripts given in Chapters 13 and 14. On a first read it might thus be advisable
to skip this section.

Script reports allow to create complex and interactive reports. Moreover, they are suited for the
generation of documentation reports that directly process metadata from ReportServer. So, for
instance, the report documentation supplied with the demo data has been realized in form of a
script report. To run a script report you only need a script. Create the following Hello World script
in the directory bin/tmp (in the File system).

"Hello World"

Now, in the Administration module switch to Report management, create a new script re- port and
assign the newly created script. If you run the report, you will see the output "Hello World". Note
that for the execution of a script report, the user does not only need to have the (execute) right to
execute the report, but also needs execute rights on the underlying script. Script reports will be
displayed in an IFrame by default, and therefore, the HTML output is appropriate. In the following
we will accordingly give our "Hello World" script a makeover.

Basically, you could simply return HTML. Instead of displaying "Hello World", for instance

"<html><body><h1>Hello World</h1></body></html>"

In the following we will use Groovy’s Markup Builder to create HTML comfortably:

import groovy.xml.*
def writer = new StringWriter()

new MarkupBuilder(writer).html {
head {
title("Hello World")

}
body {

88

http://jxls.sourceforge.net
http://jxls.sourceforge.net

7.9. Script Reports

h1("Hello World")
p("This is a hello world script")
p("The time is: " + new Date())

}
}
writer.toString()

Arguments

While configuring the script report you can add arguments to it that you can process via the variable
args just like command line arguments.

import groovy.xml.*
def writer = new StringWriter()

new MarkupBuilder(writer).html {
head {
title ("Hello World")

}
body {
h1("Hello World")
p("This is a hello world script")
p("The time is: " + new Date())
p("Arguments:" + args.join(", "))

}
}
writer.toString()

Parameters

Parameters specified at the report will be passed to the script via the parameterMap. If there is,
for instance, the parameter with the key param, you can access it by using the following statement.

parameterMap['param']

Output Formats

Beside arguments and parameters you can define multiple output formats with the report. They
can be entered separated by commas, e.g. “HTML,PDF,DOCX”. If you now execute the report, you
will see that the output formats were changed to export options. In the script itself, you can query
the output format by using the variable outputFormat. The output format for preview is “preview”:

import groovy.xml.*
def writer = new StringWriter()

new MarkupBuilder(writer).html {
head {
title ("Hello World")

}
body {
h1("Hello World")
p("This is a hello world script")
p("The time is: " + new Date())

89

7. Report Management

p("Arguments:" + args.join(", "))
p("Output format:" + outputFormat)

}
}
writer.toString()

By using the open source library Flying-Saucer you can easily create PDF documents from HTML.
ReportServer supports you here by providing a pre-set renderer for PDF creation. In the following
example a PDF object will be returned provided you have selected pdf (please ensure to use the
format in lower case letters inside the script).

The script report below supports PDF, HTML and DOCX outputs.

import groovy.xml.*
def writer = new StringWriter()

new MarkupBuilder(writer).html {
head {
title ("Hello World")

}
body {
h1("Hello World")
p("This is a hello world script")
p("The time is: " + new Date())
p("Arguments:" + args.join(", "))
p("Output format:" + outputFormat)

}
}
if("pdf".equals(outputFormat.trim()))
return renderer.get("pdf").render(writer.toString())

if("html".equals(outputFormat.trim()))
return renderer.get("html").render(writer.toString())

if("docx".equals(outputFormat.trim()))
return renderer.get("docx").render(writer.toString())

writer.toString()

Datasources

Beside parameters, arguments and output formats you can also add a datasource to a script. The
datasource object will be passed to the script via the "connection" variable. The following example
uses the internal demo data (refer to Section ??) to present a customer list.

import groovy.xml.*
import groovy.sql.Sql

def writer = new StringWriter()

new MarkupBuilder(writer).html {
head {
title ("Hello World")

}
body {

90

7.10. Grid Editor Reports

h1("Hello World")
p("This is a hello world script")
p("The current time is: " + new Date())
p("Arguments:" + args.join(","))
p("Output format:" + outputFormat) h1("Customers: ")
ul {
new Sql(connection).eachRow("SELECT DISTINCT CUS_CONTACTLASTNAME

FROM T_AGG_CUSTOMER ORDER BY 1 ASC"){
li(it.CUS_CONTACTLASTNAME)

}
}

}
}
if("pdf".equals(outputFormat.trim()))
return renderer.get("pdf").render(writer.toString())

if("html".equals(outputFormat.trim()))
return renderer.get("html").render(writer.toString())

if("docx".equals(outputFormat.trim()))
return renderer.get("docx").render(writer.toString())

writer.toString()

7.10 Grid Editor Reports

The Grid Editor component is not a report type in the classical sense. It is rather a very flexible
spreadsheet like database editor that can be used in situations where you want to enable a user to
do some basic data administration. Once defined the grid editor can be used as any report, that is,
it can be used by users in their TeamSpace and users can even export the underlying data to Excel
and schedule the report.

The grid editor component is configured by providing a datasource2 and a ReportServer script.
ReportServer scripts are covered in greater detail in Chapter 14 and in the separate ReportServer
scripting guide and it might be helpful to skip the following details on a first read and come back to
grid editors once you have a basic understanding of ReportServer scripts.

A Basic Grid Editor

The simplest use case for a grid editor is when you have a database table and you want to give
a user the possibility to edit the data in that table. At the very basis you need to generate
a GridEditorDefinition which handles the interaction with the user. For relational databases,
ReportServer provides a helper class called DbGridEditorDefinition (located in net.datenwerke.
rs.grideditor.service.grideditor.definition.db) which tries to handle as much of the
interaction (loading data, storing values, etc.) as possible. Consider the following example script:

import net.datenwerke.rs.grideditor.service.grideditor.definition.db.*

def definition = GLOBALS.getInstance(DbGridEditorDefinition)

2Currently relational database datasources are directly supported but in theory you could also implement grid editors
based on other types of datasources.

91

net.datenwerke.rs.grideditor.service.grideditor.definition.db
net.datenwerke.rs.grideditor.service.grideditor.definition.db

7. Report Management

def adapter = definition.adapter
adapter.tableName = 'T_AGG_CUSTOMER'

return definition

Here we obtain a new instance of a DbGridEditorDefinition and load an adapter object which is
used for most of the configuration. At the very least you need to specify which database table you
want to work on. With the above configuration ReportServer will attempt to load the data as

SELECT * FROM T_AGG_CUSTOMER

and display the data paged with a page size of 100 rows. To change the number of rows per page
you can call setPageSize() on the adapter and set the number of rows. By default the editor will
allow the user to edit every cell, to delete entire rows and to insert new rows. The entire editing
process is cached on the client and only if the client calls save will the data be stored.

If you need to filter the data on your table, you can use set the whereClause property as shown in
the following example:

import net.datenwerke.rs.grideditor.service.grideditor.definition.db.*

def definition = GLOBALS.getInstance(DbGridEditorDefinition)

def adapter = definition.adapter
adapter.tableName = 'T_AGG_CUSTOMER'
adapter.whereClause = 'CUS_CUSTOMERNUMBER > 100'

return definition

Consider the following data table (a small extract of the demo data):

CUS_CUSTOMERNUMBER CUS_CUSTOMERNAME CUS_CREDITLIMIT
386 Lordine Souveniers 121400
412 Extreme Desk Decorations, Ltd 86800
456 Microscale Inc. 39800

Now suppose the user changed the credit limit of Microsale to 50000. In this case ReportServer
builds the following update statement

UPDATE T_AGG_CUSTOMER
 SET
 CUS_CUSTOMERNUMBER = 456 ,
 CUS_CUSTOMERNAME = 'Microsale Inc.' ,
 CUS_CREDITLIMIT = 50000
 WHERE
 CUS_CUSTOMERNUMBER = 456 AND
 CUS_CUSTOMERNAME = 'Microsale Inc.' AND
 CUS_CREDITLIMIT = 39800

Assuming that CUS_CUSTOMERNUMBER is the table’s sole primary key, this statement would be a bit of
an overkill as the WHERE clause lists fields which are not part of the primary key. You should thus

92

7.10. Grid Editor Reports

always tell ReportServer the primary key of a table. In addition we might want to only display a
fraction of the table:

import net.datenwerke.rs.grideditor.service.grideditor.definition.db.*

def definition = GLOBALS.getRsService(DbGridEditorDefinition.class)

def adapter = definition.getAdapter()

adapter.setTableName("T_AGG_CUSTOMER")
adapter.setPrimaryKey('CUS_CUSTOMERNUMBER')
adapter.addColumns('CUS_CUSTOMERNUMBER', 'CUS_CUSTOMERNAME', 'CUS_CREDITLIMIT')

return definition;

Now if a user updates the table the following statement will be generated behind the scenes:

UPDATE T_AGG_CUSTOMER
 SET
 CUS_CUSTOMERNUMBER = 456 ,
 CUS_CUSTOMERNAME = 'Microsale Inc.' ,
 CUS_CREDITLIMIT = 50000
 WHERE
 CUS_CUSTOMERNUMBER = 456

Tip. Instead of providing a list of the primary key columns you can also use the method
addPrimaryKeyColumn().

Auto-Increment Primary Keys

If you are updating a table containing an auto-increment primary key, you should add it to the list of
columns and set its column configuration to be non-editable (setEditable(false)). You can further
hide it if desired (setHidden(true)). As an example, here you can see a table “TABLE_NAME”
having an “id” auto-increment primary key and a text column “your_column”. The example uses
the fluid API (see Section A Fluid API for more details).

def adapter = gridHelper.initDbGridEditor()

adapter.configure(report,"TABLE_NAME")
 .setPk('id')
 .columns()
 .add('id')

.setEditable(false)

.setHidden(true)
 .add('your_column')
 .done()

return adapter;

93

7. Report Management

On the importance of primary keys

You should avoid using the Grid Editor on tables that do not have a primary key (or have the primary
key not displayed). Assume the following configuration:

import net.datenwerke.rs.grideditor.service.grideditor.definition.db.*

def definition = GLOBALS.getRsService(DbGridEditorDefinition.class)

def adapter = definition.getAdapter()

adapter.setTableName("T_AGG_CUSTOMER")
adapter.addColumns('CUS_CUSTOMERNUMBER', 'CUS_CUSTOMERNAME', 'CUS_CREDITLIMIT')

return definition;

Now if a user updates the table ReportServer generates the following update query

UPDATE T_AGG_CUSTOMER
 SET
 CUS_CUSTOMERNAME = 'Microsale Inc.' ,
 CUS_CREDITLIMIT = 50000
 WHERE
 CUS_CUSTOMERNAME = 'Microsale Inc.' AND
 CUS_CREDITLIMIT = 39800

This update statement might not uniquely identify the data row and thus trigger an update on
multiple rows and thus might not have the intended effect.

Note that if you are displaying floating point numbers you always need to work with primary
keys.

A Fluid API

Besides the standard API to configure the grid editor there exists a compact, fluid API. First we can
make it easier to obtain an adapter object. For this there in the scope of the script you have access
to an object called gridHelper which provides the method initDbGridEditor. Then, to initiate the
API one needs to call the configure method on the adapter object. The above example can be
rewritten in the fluid API as

def adapter = gridHelper.initDbGridEditor()

adapter.configure(report,"T_AGG_CUSTOMER")
 .columns()
 .add('CUS_CUSTOMERNUMBER')
 .add('CUS_CUSTOMERNAME')
 .add('CUS_CREDITLIMIT')
 .done()

return adapter

94

7.10. Grid Editor Reports

The configure method takes as parameter a report object (the corresponding report object is present
in the script’s scope) and the table name. From there you can access various configuration, amongst
others, column configuration. By calling the columns method you start the column configuration
which you end again by calling done.

For the remainder of the description of the grid editor we present features first with the “classical”
API and then how to do the same with the fluid API.

Global Editor Configuration

A Grid Editor’s adapter object provides several additional configuration options that we discuss
next.

Paging

Per default the Grid Editor displays the data in a paged fashion showing 100 records on each
page. In order to increase the number of records on each page you can call the adapter object
on setPageSize(pagesize) specifying the size a page should have. To disable paging you can call
setPaging(false).

Sorting and Filtering

By default, users can filter the table by specifying a search string for every column. Furthermore
users can sort the Grid Editor by every column. If you would like to globally disable sorting or
filtering you can use the following methods of the adapter object:

setSortable() If true then sorting is enabled. (Default: true)

setFilterable() If true filtering is enabled. (Default: true)

setCanAddRecords() If true adding records is enabled. (Default: true)

setCanDuplicateRecords() If true duplicating records is enabled. (Default: true)

setCanRemoveRecords() If true removing records is enabled. (Default: true)

Note that filtering and sorting can also be specified on a per column basis.

All the above configuration can also be done via the fluid API by calling, for example,

def adapter = gridHelper.initDbGridEditor()

adapter.configure(report,"T_AGG_CUSTOMER")
 .setPaging(false)
 .columns()
 .add('CUS_CUSTOMERNUMBER')
 .add('CUS_CUSTOMERNAME')
 .add('CUS_CREDITLIMIT')
 .done()

return adapter

95

7. Report Management

Column Configs

In order to further configure how columns are presented to the user, you can specify so called column
config objects which provide column specific configurations. Basic column configs are specified
via instances of class GridEditorColumnConfig located in net.datenwerke.rs.grideditor.
service.grideditor.definition:

import net.datenwerke.rs.grideditor.service.grideditor.definition.db.*
import net.datenwerke.rs.grideditor.service.grideditor.definition.*

def definition = GLOBALS.getRsService(DbGridEditorDefinition.class)

def adapter = definition.getAdapter()

adapter.setTableName("T_AGG_CUSTOMER")
adapter.setPrimaryKey('CUS_CUSTOMERNUMBER')
adapter.addColumns('CUS_CUSTOMERNUMBER', 'CUS_CUSTOMERNAME', 'CUS_CREDITLIMIT')

def nameConfig = new GridEditorColumnConfig();
nameConfig.setDisplayName('NAME')
adapter.setColumnConfig('CUS_CUSTOMERNAME', nameConfig)

return definition;

Or more compactly via the fluid API

def adapter = gridHelper.initDbGridEditor()

adapter.configure(report,"T_AGG_CUSTOMER")
 .setPk('CUS_CUSTOMERNUMBER')
 .columns()
 .add('CUS_CUSTOMERNUMBER')
 .add('CUS_CUSTOMERNAME')
 .setDisplay('Name')
 .add('CUS_CREDITLIMIT')
 .done()

return adapter;

For setting the display name you may also use the shortcut .add('columnName','distplayName').

Besides changing the name of columns you can also specify a number of display options

96

GridEditorColumnConfig
net.datenwerke.rs.grideditor.service.grideditor.definition
net.datenwerke.rs.grideditor.service.grideditor.definition

7.10. Grid Editor Reports

setWidth() Defines the display width. (Default: 200)

setEditable() If true then the column is editable. (Default: true)

setHidden() If true then the column is not displayed. (Default: false)

setSortable() If true then the column is sortable. (Default: true)

setOrder() Allows to specify the order by supplying “asc” or “desc”. For the fluid
API there is the shortcut of calling setOrderAsc().

setFilterable() If true then the column can be filtered. (Default: true)

setEnforceCaseSensitivity() If true then filtering on that column is always case sensitive. (Default:
false)

Default values for new entries

When a user adds a record to a table, all values are by default set to NULL. You can specify a
default value for a column by using the setDefaultValue method of a column configuration object.

Data Validation

Without further configuration ReportServer will only enforce that entered data is of the correct
type. For example, if a field is of type INTEGER, then a user can only type in digits into the
text field. In order to further restrict what users can enter you can add one or more Validators
to each column. Validators are located in package net.datenwerke.rs.grideditor.service.
grideditor.definition.validator. The following validators are available

MaxIntegerValidator Allows to specify an upper bound for columns of type INTEGER

MinIntegerValidator Allows to specify a lower bound for columns of type INTEGER

MaxBigDecimalValidator Allows to specify an upper bound for columns of type DECIMAL

MinBigDecimalValidator Allows to specify a lower bound for columns of type DECIMAL

MaxLongValidator Allows to specify an upper bound for columns of type LONG

MinLongValidator Allows to specify a lower bound for columns of type LONG

MaxDoubleValidator Allows to specify an upper bound for columns of type DOUBLE

MinDoubleValidator Allows to specify a lower bound for columns of type DOUBLE

MaxFloatValidator Allows to specify an upper bound for columns of type FLOAT

MinFloatValidator Allows to specify a lower bound for columns of type FLOAT

MaxDateValidator Allows to specify an upper bound for columns of type DATE

MinDateValidator Allows to specify a lower bound for columns of type DATE

MaxLengthValidator Allows to specify a maximum length for character based columns

MinLengthValidator Allows to specify a minimum length for character based columns

RegExValidator Allows to restrict text based fields to match a pattern

97

net.datenwerke.rs.grideditor.service.grideditor.definition.validator
net.datenwerke.rs.grideditor.service.grideditor.definition.validator

7. Report Management

In order to configure a validator you instantiate the corresponding object and provide the necessary
configuration in the constructor. All Min/Max validators take as configuration the bound as well as
an error message that is displayed in case a user enters a value that violates the bound. For example

new MaxIntegerValidator(15, "Values must be less than 15");

The RegExValidator takes as configuration a regular expression (see http://docs.oracle.com/
javase/7/docs/api/java/util/regex/Pattern.html for an introduction) and an error message.
To, for example, restrict data to conform to a date format of type "yyyy-mm-dd" you could use

new RegExValidator("^\d{4}-\d{2}-\d{2}$", "Value should be of format yyyy-mm-dd");

Note that the above pattern allows 9999-99-99.

With the fluid API there are also shortcuts to validators. You can call addValidator(new ..) when
configuring a column. Additionally there are the following shortcuts:

addEmptyValidator(message)

addFixedLengthValidator(length, message)

addRegExValidator(regex, message

addMinLengthValidator(min, message

addMaxLengthValidator(max, message)

addMinValidator(min, message)

addMinValidator(max, message

Field Editors

By default the Grid Editor constructs form fields matching the type of a column. That is, for a text
columns a text field is created, for date columns a date picker, for booleans a checkbox. For certain
fields you can change the default behavior and specify a custom editor. In order to tell a column that
it should use a custom editor use the setEditor method of a GridEditorColumnConfig option. All
custom editors are located in package net.datenwerke.rs.grideditor.service.grideditor.
definition.editor.

Quasi-Booleans

Sometimes boolean values are not stored as booleans in a database but as text or int values. For
example, you might have a text column with the values "true" and "false" or an integer column
with values 1 and 0. In this case you can use a TextBooleanEditor or an IntBooleanEditor in
order to still present a user with a simple checkbox, rather than a textfield or a number field. As
configuration you can tell the editor which value is representing TRUE and which value is representing
FALSE. Per default TextBooleanEditor uses the strings true and false and IntBooleanEditor
uses integers 1 and 0. To change the default use methods setTrueText (resp. setFalseText) and
setTrueInt (resp. setFalseInt).

The following is an example assuming the column names textbool and intbool.

98

RegExValidator
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
net.datenwerke.rs.grideditor.service.grideditor.definition.editor
net.datenwerke.rs.grideditor.service.grideditor.definition.editor
TextBooleanEditor
IntBooleanEditor
TextBooleanEditor
IntBooleanEditor

7.10. Grid Editor Reports

def textbConf = new GridEditorColumnConfig();
textbConf.setEditor(new TextBooleanEditor());
adapter.setColumnConfig('textbool', textbConf);

def intbConf = new GridEditorColumnConfig();
intbConf.setEditor(new IntBooleanEditor());
adapter.setColumnConfig('intbool', intbConf);

Using the fluid API, we can define quasi-boolean editors for columns by calling withIntBooleanEditor ⤦
 Ç , or withTextBooleanEditor.

def adapter = gridHelper.initDbGridEditor()

adapter.configure(report, 'TABLE')
 .setPk('...')
 .columns()
 .add('column')
 .withIntBooleanEditor()
 .done()

return adapter;

Text-Dates

Sometimes dates are stored in text form, for example, as strings of the form yyyy-mm-dd. In these
cases you can tell the Grid Editor not to use a basic text field but a date picker. For this use
the editor TextDateEditor. For configuration you should provide the corresponding date pattern
(see http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html for
an introduction). The following is an example for how to use the TextDateEditor.

def dateConf = new GridEditorColumnConfig();
dateConf.setEditor(new TextDateEditor("yyyy-mm-dd"));
adapter.setColumnConfig('textdate', dateConf);

Using the fluid API, we can define quasi-boolean editors for columns by calling withTextDateEditor ⤦
 Ç , or withTextDateEditor(format) and specifying the format.

Selection Lists

Often you might want to allow users to choose from a list of values. For text based columns and
integer columns you can define selection lists via

TextSelectionListEditor A drop down editor for text based columns.

IntSelectionListEditor A drop down editor for text based integers

LongSelectionListEditor A drop down editor for text based longs

DateSelectionListEditor A drop down editor for text based dates

DecimalSelectionListEditor A drop down editor for text based BigDecimals

FloatSelectionListEditor A drop down editor for text based float

DoubleSelectionListEditor A drop down editor for text based double

99

TextDateEditor
http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

7. Report Management

A selection list can be configured in two ways. Either you can specify a simple list of values or you
can specify a map of label-value pairs. Each entry of a selection list consists of a label (the string
that is shown to the user) and a value (the actual value that is stored in the database). In case you
provide a simple list, each entry serves both as label and as value. Following is an example of a
simple selection list for a text column.

def ddTextConf = new GridEditorColumnConfig();
def textddEditor = new TextSelectionListEditor();
textddEditor.setValues(['a','b','c','d']);
ddTextConf.setEditor(textddEditor);
adapter.setColumnConfig('textdd', ddTextConf);

It configures a selection list with the entries a, b, c, and d. Alternatively, you can specify each value
individually:

def ddTextConf = new GridEditorColumnConfig();
def textddEditor = new TextSelectionListEditor();
textddEditor.addValue('a');
textddEditor.addValue('b');
textddEditor.addValue('c');
textddEditor.addValue('d');
ddTextConf.setEditor(textddEditor);
adapter.setColumnConfig('textdd', ddTextConf);

If you want to distinguish between labels and values you can either specify the map directly by
calling setValueMap(). Or you can add each entry individually as follows:

def ddTextConf = new GridEditorColumnConfig();
def textddEditor = new TextSelectionListEditor();
textddEditor.addEntry('a','b');
textddEditor.addEntry('c','d');
textddEditor.addEntry('e','f');
ddTextConf.setEditor(textddEditor);
adapter.setColumnConfig('textdd', ddTextConf);

For integer columns the configuration works identical with the only difference that you assign a
IntSelectionListEditor instead of a TextSelectionListEditor and that values are of type
integer. Following is an example using a simple list to define values:

def ddIntConf = new GridEditorColumnConfig();
def intEditor = new IntSelectionListEditor();
intEditor.setValues([2,3,5,7,11])
ddIntConf.setEditor(intEditor);
adapter.setColumnConfig('intdd', ddIntConf);

And an example with custom labels.

def ddIntConf = new GridEditorColumnConfig();
def intEditor = new IntSelectionListEditor();
intEditor.addEntry('foo',2)
intEditor.addEntry('bar',7)
ddIntConf.setEditor(intEditor);
adapter.setColumnConfig('intdd', ddIntConf);

100

IntSelectionListEditor
TextSelectionListEditor

7.10. Grid Editor Reports

Fluid API for Selection Lists

With the fluid API we can also compactly generate selection editors. By calling withSelectionEditor ⤦
 Ç () you start the configuration of the editor which you end by calling done(). This allows you
to configure an editor for example as:

def adapter = gridHelper.initDbGridEditor()

adapter.configure(report, 'TABLE)
 .setPk('...')
 .columns()
 .add('column')
 .withSelectionEditor()
 .addValue('A')
 .addValue('B')
 .done()
 .done()

return adapter;

Within the edit mode for the editor you have the very same methods addValue and addEntry.
In addition you can add multiple values via the method from which either takes a list of values
(corresponding to addValue) or a map (corresponding to addEntry).

def adapter = gridHelper.initDbGridEditor()

adapter.configure(report, 'TABLE)
 .setPk('...')
 .columns()
 .add('column')
 .withSelectionEditor()
 .from([1,2,3,4])
 .done()
 .done()

return adapter;

Note that we did not specify the type of selection editor with the fluid API. The type is, instead,
recognized by the provided values. This means, that in case you want to add, for example,
“long” values you need to typecast.

Finally, a frequent objective is to construct the values for the selection list from a database query.
To this end, you can use the fromSql which takes either a SQL statement or a connection object
and a SQL statement. In case you provide no connection, the same connection as to the grid editor
is used. In case you provide a connection, be sure to close the connection after usage. The SQL
statement needs to return either two columns (key,value) or a single column.

def adapter = gridHelper.initDbGridEditor()

adapter.configure(report, 'TABLE')
 .setPk('...')

101

7. Report Management

 .columns()
 .add('column')
 .withSelectionEditor()
 .fromSql('SELECT key, value FROM X')
 .done()
 .done()

return adapter;

Predefined Variables

Within your script you can access a couple of predefined variables that allow you to access the
report object, as well as the current user and the parameters. The following variables are available:

report The corresponding GridEditorReport object.

user The current user.

parameterSet The ParameterSet object with the current parameters.

parameterMap A map allowing to easily access parameters.

gridHelper Used to easily construct an adapter object

Obtaining a Database Connection

You can easily obtain a database connection for the datasource that is configured at the report by
using the getConnection() method from the DbGridEditorDefinition object.

import net.datenwerke.rs.grideditor.service.grideditor.definition.db.*
import net.datenwerke.rs.grideditor.service.grideditor.definition.*

def definition = GLOBALS.getRsService(DbGridEditorDefinition.class)
def connection = definition.getConnection(report)

connection.close()

Be sure to close the connection when you are done using it.

Foreign Key Relationships

In the following we explain how you can use foreign key relationships to make editing easier. Consider
a database table Products that has the following structure

Products

productNumber The primary key (INT)

productName (VARCHAR)

productCategory A foreign key pointing to Table Categories (INT).

productSupplier A foreign key pointing to Table Suppliers (INT).

102

DbGridEditorDefinition

7.10. Grid Editor Reports

Here, we have to foreign key relationships, one pointing from products to a specific product category
and a second one pointing to a supplier for the product. What we are modeling here is a many-to-one
relationship. That is, a product is in exactly one category, but of course, a category can contain
multiple products. Now, assume that we have category and supplier tables that look like:

Categories

categoryNumber The primary key (INT)

categoryName (VARCHAR)

categoryDescription (VARCHAR)

Suppliers

supplierNumber The primary key (INT)

supplierFirstName (VARCHAR)

supplierLastName (VARCHAR)

Now, consider that you use a basic grid editor instance to manage the product table:

import net.datenwerke.rs.grideditor.service.grideditor.definition.db.*

def definition = GLOBALS.getRsService(DbGridEditorDefinition.class)

def adapter = definition.getAdapter()
adapter.setTableName("Products")
adapter.setPrimaryKey('productNumber')
adapter.addColumns('productNumber', 'productName', 'productCategory', ' ⤦

 Ç productSupplier')

return definition;

In this case, if you wanted to switch the category of a product, you would need to know the category
number. In such cases, it might be helpful, to instead be able to choose a category using the
category name rather, but this is stored separately from the Products table. For such cases you
can specify foreign key columns which allow you to display different information in place of the
information that is within the table. On update and insert this information is then replaced again by
the correct value.

In order to specify a foreign key column you addForeignKeyColumn() methods provided by the
adapter. They take four or five parameters:

103

7. Report Management

column Denotes the column in your table that has the foreign key relationship. In the
example this would be categoryName.

fkTableName Denotes the table corresponding to the foreign key. In the example this would
be Categories.

fkColumn Denotes the column within the foreign key table. In the example this would be
categoryNumber.

displayExpression A SQL expression to select a unique value from the foreign key table that is then
displayed. Usually this is a single column, but it could also hold a more complex
expression. In the example we could simply set it to categoryName

displayName/config The final parameter takes either a String or a GridEditorColumnConfig object.
If a string is specified this is used as the display name for the column. If a config
object is specified this will be used as configuration for the column. If neither is
specified then the column name is set to column.

We could thus specify the relationship as follows in groovy code:

import net.datenwerke.rs.grideditor.service.grideditor.definition.db.*

def definition = GLOBALS.getRsService(DbGridEditorDefinition.class)

def adapter = definition.getAdapter()
adapter.setTableName("Products")
adapter.setPrimaryKey('productNumber')
adapter.addColumns('productNumber', 'productName')
 .addForeignKeyColumn('productCategory','Categories','categoryNumber',' ⤦

 Ç categoryName','Category')
 .addColumns('productSupplier')

return definition;

Similarly, you could additionally define the foreign key relationship also for the productSupplier
column.

Usually, you would additionally define an editor that allows users to select a category. For this,
you can specify a config object that is used as fifth argument. For example something along the
following lines (note also the additional imports).

import net.datenwerke.rs.grideditor.service.grideditor.definition.db.*
import net.datenwerke.rs.grideditor.service.grideditor.definition.*
import net.datenwerke.rs.grideditor.service.grideditor.definition.editor.*

import groovy.sql.Sql

def definition = GLOBALS.getRsService(DbGridEditorDefinition.class)

def adapter = definition.getAdapter()
adapter.setTableName("Products")
adapter.setPrimaryKey('productNumber')

// define config for categories
def categoryConfig = new GridEditorColumnConfig(displayName: 'Category')
def categoryEditor = new TextSelectionListEditor()
def connection = definition.getConnection(report)

104

GridEditorColumnConfig

7.10. Grid Editor Reports

try{
 new Sql(connection).eachRow('SELECT categoryName AS name FROM Categories ORDER BY 1'){
 categoryEditor.addValue(it.name)
 }
} finally{
 connection.close();
}
categoryConfig.setEditor(categoryEditor);

adapter.addColumns('productNumber', 'productName')
 .addForeignKeyColumn('productCategory','Categories','categoryNumber','categoryName', ⤦

 Ç categoryConfig)
 .addColumns('productSupplier')

return definition;

Complex Display Expressions

In the above example we used the attribute categoryName to display category names instead of
category numbers. Assume, that we wanted to display the suppliers as LASTNAME, FIRSTNAME.
For this we can use SQL expressions in place of the display expression. For example, in MySQL to
select LASTNAME, FIRSTNAME we can use the following query

SELECT CONCAT(supplierLastName, ", ", supplierFirstName) FROM Suppliers

Our example would, thus, change as follows (note the changes in the second to last line)

import net.datenwerke.rs.grideditor.service.grideditor.definition.db.*
import net.datenwerke.rs.grideditor.service.grideditor.definition.*
import net.datenwerke.rs.grideditor.service.grideditor.definition.editor.*

import groovy.sql.Sql

def definition = GLOBALS.getRsService(DbGridEditorDefinition.class)

def adapter = definition.getAdapter()
adapter.setTableName("Products")
adapter.setPrimaryKey('productCode')

// define config for categories
def categoryConfig = new GridEditorColumnConfig(displayName: 'Category')
def categoryEditor = new TextSelectionListEditor()
def connection = definition.getConnection(report)
try{
 new Sql(connection).eachRow('SELECT categoryName AS name FROM Categories ORDER BY 1'){
 categoryEditor.addValue(it.name)
 }
} finally{
 connection.close();
}
categoryConfig.setEditor(categoryEditor);

adapter.addColumns('productCode', 'productName')
 .addForeignKeyColumn('productCategory','Categories','categoryNumber','categoryName', ⤦

 Ç categoryConfig)
 .addForeignKeyColumn('productSupplier','Suppliers', 'supplierNumber', 'CONCAT({{table}}. ⤦

 Ç supplierLastName, ", ", {{table}}.supplierFirstName)','Supplier')

return definition;

The change should be somewhat unexpected as we additionally added the string {{table}} twice.
This becomes necessary since behind the scenes ReportServer needs to create a complex SELECT

105

7. Report Management

statement that joins together the foreign key tables. The replacement {{table}} is then used
to plug in the correct temporary table name. Of course, we could also for the supplier add an
editor. Here we would not need {{table}} replacement. Instead, the code for the editor is straight
forward:

def supplierEditor = new TextSelectionListEditor()
def connection = definition.getConnection(report)
try{
 new Sql(connection).eachRow('SELECT CONCAT(supplierLastName, ", ", supplierFirstName) AS name FROM ⤦

 Ç Suppliers ORDER BY 1'){
 supplierEditor.addValue(it.name)
 }
} finally{
 connection.close();
}

Foreign Keys and the Fluid API

Of course, you can also define foreign key columns via the fluid API. For this, use the fk method.
Additionally, to add the “default” selection list editor for a foreign key, i.e., the selection list that
displays all possible choices you can use the withFkEditor method. To further fine tune the selection
you may us the withFkEditorWhere(...) method which takes as input a where clause that is added
to the underlying SQL query.

def adapter = gridHelper.initDbGridEditor()

adapter.configure(report, 'Products')
 .setPk('productCode')
 .columns()
 .add('productCode')
 .add('productName')
 .add('productCategory')
 .fk('Categories','categoryNumber','categoryName')
 .withFkEditor()
 .add('productSupplier', 'Supplier')
 .fk('Suppliers', 'supplierNumber', 'CONCAT({{table}}.supplierLastName, ", ", {{table}}. ⤦

 Ç supplierFirstName)')
 .done()

return adapter;

7.11 Executing Reports via the URL

If you wish to integrate reports in external applications, you can use a specific URL to directly link
the report export.

http://SERVER:PORT/reportserverbasedir/reportserver/reportexport

Here the following parameters control the export:

106

http://SERVER:PORT/reportserverbasedir/reportserver/reportexport

7.11. Executing Reports via the URL

id Specifies the report (also refer to key).

p_ Can be used to specify parameters. After the underscore character, the parameter will be
prompted by its key. p_myparameter=abc|def, for instance, can be used to set a list parameter
to abc and def.

key As an alternative to id, key can be used to select reports.

format Defines the output format. Valid output formats are: EXCEL, CSV, PDF, XML, WORD, XLS, RTF,
PNG, JSON, JSONC (for compact JSON export), SAIKU_CHART_HTML, TABLE_TEMPLATE, and
RS_SIMPLE_BEAN.

page Allows to export a single page.

Depending on the format, additional properties are available.

TABLE_TEMPLATE The template to be used needs to be specified via its ID as tabletemplate_id or
via its key as texttttabletemplate_key.

csv The delimiter is controlled via csv_sep, the quote character can be specified via
csv_q. Additionally, you can control whether or not to print a header line via the
property csv_ph.

Particularities of the Dynamic List

In addition to the control options stated above, you can set further properties for dynamic lists:

pagesize Defines the pagesize to be used when exporting single pages. For example
&page=2&pagesize=10 will select records 11 to 20.

c_1 For dynamic lists this option specifies the columns to output. Separated by the pipe
symbol, an alias can be entered. The figure following the underscore specifies the
sequence. c_2=ID|fooID specifies the second column to be the ID column with the
alias fooID.

allcolumns Can be specified instead of c_ to select all columns (true/false)

ac_1 Like c_1, however, this option selects a computed column.

agg_i Sets an aggregation for column i. Admissible values are: AVG, COUNT, MAX, MIN, SUM,
VARIANCE, COUNT_DISTINCT

h_i Hides the i-th column

or_i Controls i-th column sorting. Admissible values are: ASC (ascending), DESC (descend-
ing).

fi_i Allows to define inclusion filters for the i column. Multiple filter values can be sep-
arated by the pipe (|) symbol. Here you will find an example for a configuration:
fi_1=FILTER_A|FILTER_B|FILTER_C

fri_i Allows to define inclusion filter sections for the i-th column. Multiple sections will be
separated by the pipe (|) symbol. To separate the section use space-dash-space (“-”), as
it is known from the filter dialogue. Additionally, to define open intervals, start the filter
with “-␣” or end it with “␣-” (where ␣ denotes a space).

fe_i Like fi_ however, it defines an exclusion filter.

107

7. Report Management

Here you will find an example for a possible configuration (spaces in URLs will be coded as %20,
further information on URL encoding you wilL find, for instance under http://www.w3schools.
com/tags/ref_urlencode.asp):

http://127.0.0.1:8888/reportserver/reportserver/reportexport?id=4&c_1=ENTITY_ID|
FOO_ID&fri_1=2%20-%205|-%207&c_2=action&c_3=key_field&h_1&or_1=DESC&format=pdf

Configuring Reports in ReportServer by URL

In addition to exporting reports by URL, you can directly open pre-configured reports in ReportServer
by URL. Here the URL is

http://SERVER:PORT/reportserverbasedir/ReportServer.html#reportexec/

Here you can use the above parameters to pre-configure the report. Please keep in mind to separate
parameters from the appurtenant value by setting a colon (:) (instead of using the equal sign “=”).

The above parameters are supplemented by "v:preview" to directly jump to the preview. Here we
give you an example for a possible configuration:

http://SERVER:PORT/reportserverbasedir/ReportServer.html#reportexec/key:customer&
c_1:CUS_CUSTOMERNUMBER&c_2:CUS_CUSTOMERNAME&c_3:CUS_ADDRESSLINE1&c_4:CUS_ADDRESSLINE2&
c_5:CUS_CITY&fi_1:187&v:preview

Embedding Reports Without Login

In some cases it is helpful to execute reports without having to login first. Here ReportServer’s
solution is an easy-to-use servlet. The httpauthexport servlet allows to execute reports without
the user being logged in. The URL to be used is:

http://SERVER:PORT/reportserverbasedir/reportserver/httpauthexport

Apart from the usual parameters, you have to enter

user User name

apikey An apikey that is defined as a user property

Define the API Key and Define Appropriate Permissions

To define an API key for a user go to the user management view and select the user in question.
Then select the tab User Properties and add a new property called apikey. As value, you can use
any string (preferably a random string that is on the longish side).

Note that the apikey can be found as plain text in the URL, so make sure you use HTTPS.
Treat the apikey like any password.

The user does not require a password, or any unusual permissions. The only permissions required
are the execute permission on those reports that you plan to embed. Suppose, that we have

108

http://www.w3schools.com/tags/ref_urlencode.asp
http://www.w3schools.com/tags/ref_urlencode.asp
http://127.0.0.1:8888/reportserver/reportserver/reportexport?id=4&c_1=ENTITY_ID|FOO_ID&fri_1=2%20-%205|-%207&c_2=action&c_3=key_field&h_1&or_1=DESC&format=pdf
http://127.0.0.1:8888/reportserver/reportserver/reportexport?id=4&c_1=ENTITY_ID|FOO_ID&fri_1=2%20-%205|-%207&c_2=action&c_3=key_field&h_1&or_1=DESC&format=pdf
http://SERVER:PORT/reportserverbasedir/ReportServer.html#reportexec/
http://SERVER:PORT/reportserverbasedir/ReportServer.html#reportexec/key:customer&c_1:CUS_CUSTOMERNUMBER&c_2:CUS_CUSTOMERNAME&c_3:CUS_ADDRESSLINE1&c_4:CUS_ADDRESSLINE2&c_5:CUS_CITY&fi_1:187&v:preview
http://SERVER:PORT/reportserverbasedir/ReportServer.html#reportexec/key:customer&c_1:CUS_CUSTOMERNUMBER&c_2:CUS_CUSTOMERNAME&c_3:CUS_ADDRESSLINE1&c_4:CUS_ADDRESSLINE2&c_5:CUS_CITY&fi_1:187&v:preview
http://SERVER:PORT/reportserverbasedir/ReportServer.html#reportexec/key:customer&c_1:CUS_CUSTOMERNUMBER&c_2:CUS_CUSTOMERNAME&c_3:CUS_ADDRESSLINE1&c_4:CUS_ADDRESSLINE2&c_5:CUS_CITY&fi_1:187&v:preview
http://SERVER:PORT/reportserverbasedir/reportserver/httpauthexport

7.11. Executing Reports via the URL

specified the apikey 79PKXGScP8r8 on a fresh user exportuser which has no permissions except
the permission to execute report 5000. Then, when everything goes right, then

http://SERVER:PORT/reportserverbasedir/reportserver/httpauthexport?id=5000&user=
exportuser&apikey=79PKXGScP8r8&format=HTML&download=false

should execute the report with id 5000 and user exportuser.

Embedding the Report Execution View

In the previous section we have seen how to execute reports directly via the URL. It is also
possible to detach the report execution view (i.e., including parameter configuration or the complete
configuration for dynamic lists) to, for example, embed it into a portal. The syntax is analogous to
the reportexec functionality described above. The base URL for embedding the report view is

http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinereport/

Thus, to display report with id 29 you would use the URL

http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinereport/id:29

If you only want to display the preview view, then you can add the “type:preview” parameter, that is

http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinereport/id:29&type:
preview

You can even specify exactly which views to display. Assuming that report 29 is a dynamic list, then
the following would select the list config as well as the preview

http://rstest.datenwerke.net/ReportServer.html#inlinereport/id:29&views:listconfig|
preview

The following views are available

parameter The parameter view.

computedcolumns The computed columns view of dynamic lists.

prefilter The pre filter view of dynamic lists.

listconfig The list configuration view of dynamic lists.

preview The preview view

Note that you can still completely configure the report via the URL as seen in the following example
where we configure a dynamic list:

http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinereport/key:customer&
c_1:CUS_CUSTOMERNUMBER&c_2:CUS_CUSTOMERNAME&c_3:CUS_ADDRESSLINE1&c_4:CUS_ADDRESSLINE2&
c_5:CUS_CITY&fi_1:187&views:preview

109

http://SERVER:PORT/reportserverbasedir/reportserver/httpauthexport?id=5000&user=exportuser&apikey=79PKXGScP8r8&format=HTML&download=false
http://SERVER:PORT/reportserverbasedir/reportserver/httpauthexport?id=5000&user=exportuser&apikey=79PKXGScP8r8&format=HTML&download=false
http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinereport/
http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinereport/id:29
http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinereport/id:29&type:preview
http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinereport/id:29&type:preview
http://rstest.datenwerke.net/ReportServer.html#inlinereport/id:29&views:listconfig|preview
http://rstest.datenwerke.net/ReportServer.html#inlinereport/id:29&views:listconfig|preview
http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinereport/key:customer&c_1:CUS_CUSTOMERNUMBER&c_2:CUS_CUSTOMERNAME&c_3:CUS_ADDRESSLINE1&c_4:CUS_ADDRESSLINE2&c_5:CUS_CITY&fi_1:187&views:preview
http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinereport/key:customer&c_1:CUS_CUSTOMERNUMBER&c_2:CUS_CUSTOMERNAME&c_3:CUS_ADDRESSLINE1&c_4:CUS_ADDRESSLINE2&c_5:CUS_CITY&fi_1:187&views:preview
http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinereport/key:customer&c_1:CUS_CUSTOMERNUMBER&c_2:CUS_CUSTOMERNAME&c_3:CUS_ADDRESSLINE1&c_4:CUS_ADDRESSLINE2&c_5:CUS_CITY&fi_1:187&views:preview

7. Report Management

7.12 Report Properties

Report properties provide a means to further customize how report server treats reports. You can
access report properties via the report management perspective in the administration module by
selecting a report and then selecting Report Properties. You are then presented with a grid that
allows to view and change the current properties for that particular report.

Tip. Report properties on a base report are inherited by all of its variants.

Report properties are simple key value pairs. You can add a new property, by clicking on add
and remove existing ones by selecting them and clicking remove. Note that all changes are only
committed once you hit the Save button in the toolbar.

Available Report Properties per Type

All Report Formats

output_format_auth A comma-separated list of available output formats for the particular report.
By setting this property, you can explicitly enable and disable export formats
for the given report. If this property is not set, all export formats for the
given report are available by default. Note that not all export formats are
supported in all kind of reports. If you don’t set output_format_auth,
all available formats for the specific report will be shown. You can then
use output_format_auth for allowing a subset from this set of formats.
Valid output formats are: EXCEL, CSV, PDF, XML, WORD, XLS, RTF, PNG, JSON,
JSONC (for compact JSON export), SAIKU_CHART_HTML, TABLE_TEMPLATE,
and RS_SIMPLE_BEAN. SAIKU_CHART_HTML is needed for Pivot/Mondrian
chart export, while the last two are necessary for dynamic list template export,
e.g. JXLS.

output_format_default The default export format of the particular report. The valid values are the
same as in the output_format_auth property, with the difference that
only one value may be set here.

110

7.13. Report Metadata

The Dynamic List

output_parameters Defines if the parameters and their values should be exported
together with the report (defaults to false. Only available in Enter-
prise Edition). Note that the parameterMapSimple variable must
be set in the pdfexport.cf or the htmlexport.cf configuration file for
this to work in the PDF / HTML exports, respectively. In contrast,
the Excel export does not need any additional configuration. Excel
outputs the parameters into a “Configuration”-named sheet.

output_filters Defines if the filters and pre-filters should be exported together
with the report (defaults to false. Only available in Enterprise
Edition). Note that the filterMapSimple variable must be set in
the pdfexport.cf or the htmlexport.cf configuration file for this to
work in the PDF / HTML exports, respectively. In contrast, the
Excel export does not need any additional configuration. Excel
outputs the filters into a “Configuration”-named sheet.

output_complete_configuration Allows to export the complete dynamic list configuration variables
and their respective values (defaults to false. Only available in
Enterprise Edition). This includes the parameters, filters, pre-
filters, global variables, report metadata, etc. Everything you can
include in the dynamic list query is listed here. This greatly helps
the user to analyze the exported output. As parameters are in-
cluded here, this report property overrides the output_parameters
property. The same holds for output_filters. Analogously to out-
put_parameters, the parameterMapSimple (or filterMapSimple for
filters) is needed for the HTML / PDF export. The Excel export
outputs this configuration into a “Complete configuration”-named
sheet.

output_include_hidden_parameters Controls if the parameter output should include hidden param-
eters (defaults to false. Only available in Enterprise Edition).
Note that this property influences both output_parameters and
output_include_hidden_parameters properties.

ui:preview:count:default Controls whether the report preview view directly starts counting
the number of rows in the result. (Defaults to auto).

ui:filter:count:default Controls whether filter views attempt to count the number of
valid results. (Defaults to auto).

ui:filter:consistency:show Controls whether the link/unlink button in the filter view is visible.
(Defaults to true).

ui:filter:consistency:default Controls whether link mode is per default enabled for filters. (De-
faults to enable).

7.13 Report Metadata

It is often very useful to save additional data with the report object. Depending on the process, it
might be helpful to save when and by whom a report was checked and accepted, or, maybe you wish
to file the link leading to the documentation of a report.The type of metadata required, therefore,

111

7. Report Management

depends to a large extent on the processes applied in an enterprise.

ReportServer supports you to file report specific metadata by allowing to maintain a key value list
for each report. In Report management you can recall it in the relevant report by clicking on the
Metadata tab. With the Add and Remove buttons new key pairs can be added or removed. By
clicking on the arrow next to the Add button you may choose from a list of key words already
used.You can directly and easily edit the values in the list.

Using Metadata as Parameters

Available metadata can be used in reports as parameters. To do this, the following replacements
are available.

_RS_METADATA_NAME Includes the value for the key NAME.

_RS_METADATA_SUPER_NAME The hierarchic structure of reports and variants allows to overwrite meta-
data of a report in the variant. To access the value that was overwritten,
use the following replacement.

With the ${} formula language, you can additionally use the replacement _RS_METADATA. It enables
to access a HashMap including the existing metadata and relevant values.

7.14 Drill Down Reports

ReportServer provides support in creating drill down and drill across reports with Jasper- Reports
and BIRT. For Drill Down and Drill Across operations, reports will be linked with each other
to show more detailed information on specified data. ReportServer provides the special param-
eters _RS_BACKLINK_ID und _RS_BACKLINK_URL to each report execution . So when you are in a
JasperReport and you want to link it to the report with the key myKey enter the link as follows:

"http://localhost:8888/reportserver/reportserver/reportexport?key=myKey&"
+ "format=html&bid=" + $P{_RS_BACKLINK_ID}

Of course, you have to replace the first part of the link by the server address. By entering the
parameter bid you can easily set a backlink. You will get the required URL via the parameter
_RS_BACKLINK_URL. If there is no backlink, the parameter will be empty.

112

Chapter 8

Global Constants

Global constants can be regarded as static text parameters. To create a global constant, go to the
Administration module and there to the sub module Global Constants. Click on Add constant
to create a new constant. Then enter the name and value of the constant by mouse click in the
respective cell. To delete one or more constants, select the relevant constants and actuate the
Remove button from the tool bar. To remove all constants, click on the arrow beside the Remove
button and select Remove all.

In reports constants can be used as parameters. Once you have created a constant with the
name KONST_MY_CONSTANT, you can work with the replacements ${KONST_MY_CONSTANT} and $!{ ⤦
 Ç KONST_MY_CONSTANT} in dynamic lists. As it applies with parameters, please have in mind to
distinguish between $ and $! where the replacement $ will be used in a query, and S! directly. For
further information refer to the paragraph Parameters in the Dynamic List section. When used
in other report engines (e.g. BIRT or Jasper), the syntax applicable there must be considered.
For Jasper it is for instance $P{KONST_MY_CONSTANT}. For further information refer to the relevant
sections.

115

Chapter 9

User Variables

User variables are designed to adapt a report to the needs of the user executing it. By applying
user variables, the same report holds a different base data entirety for different users.

We would like to explain user variables based on an example. The employees of an enterprise
are distributed to two locations. They shall be given access to the sales figures of the enterprise,
however, only to the data relevant for their respective location. You can model this requirement by
establishing two separate reports (which are almost identical), and by granting the employees of
location A access to the one report and the employees of location B to the other report. But you
can also design a single report, and by applying user variables restrict the base data entirety per
each executing user. Let us assume the user variable OFFICE was created, and the employees of
location A have set it to “A”, the employees of location B to “B”. Now, you can create a parameter
of type User variable for the report and select the variable OFFICE that you have defined before.
(In the following example we assume to proceed on the basis of a dynamic list and a relational
database.) Now, the query for the report can be designed as follows:

SELECT * FROM SALES WHERE SALES_OFFICE = ${OFFICE}

9.1 Defining User Variables

Before you can apply user variables, you have to create them.To do this, go to User management
and select the root node (User root). Use the tab User variable management to add new user
variables. You can choose from the following types:

Text variable Allows to set plain text

List Allows to set multiple values

When defining user variables you have to assign a name, and you can add a description at your
discretion. To do this, click on the respective cell. You can define further properties for the variable
by activating it and clicking on Edit in the tool bar.

117

9. User Variables

9.2 Allocating User Variables

User variables are allocated to users directly from the User management. However, you can also
assign user variables to organisational units. Here the user variable will be passed on to all users
within the organisational unit. So it is possible to specify at the top organisational unit (User root)
default values for variables which will overwrite the lower levels.

To specify user variables, select a user or an organisational unit and switch to the User variables
tab. In the bottom table you see user variables which apply with this user/organisational unit by
inheritance, and in the upper table you see the user variables specified here. To set a variable, click
on Add and then select the desired variable. To specify the value of the variable, double click in the
respective line of the table.

For text variables, enter the value in the entry field. For list parameters, you can enter the single
values by separating them with | (pipe symbol).

9.3 Using User Variables in Reports

To use user variables in reports, create a parameter of type user variable and allocate the respective
user variable to it. Now you can work with the parameter in the usual way. The replacement either
hides an object of Type String (for a text user variable) or an object of Type Set <string> (for a
list variable).

118

Chapter 10

Import and Export

You can export various objects of a ReportServer instance in order to save them or to import
them to another instance. You will find the export options in the Administration section under the
respective object (e. g. a report). You can not only export single objects but also entire sub-trees.
With this you can move the complete report inventory of an installation to another one.

When exporting a ReportServer object, all reference objects required for using the object will be
exported, too. So a report will, for example, be accompanied by the respective datasource.

10.1 Exporting

To export an object or a sub-tree, open the respective section in the Administration module (e.g.
Report management). Click on the object or the superordinate folder of the sub-tree to export.
In the toolbar you will find the Quick export button. When exporting a report, you can decide
whether or not to include variants in the export. As soon as the export has been finalized (consider
that this may take some time for more comprehensive sub-trees) ReportServer will ask whether to
immediately display, or to download the export. Direct download as a zipped archive is recommended
for comprehensive exports.

Export Format

ReportServer exports objects in an XML dialect. This allows to edit export files with common XML
tools. In addition, it ensures to easily adapt export files to later versions of ReportServer.

10.2 Importing

To upload exported objects to ReportServer, in the Administration module go to the Import section,
and then click on Start import in the toolbar. In the window that opens you can either upload an
export file (as a .zip file) or directly enter an exported XML file.

After the upload of the exported data you will see the object types included in the export in the left
part of the window. There are differing import options available depending on the section.

121

10. Import and Export

After having successfully completed the configuration, in the toolbar click on Finalize import to
execute the import. By clicking on Cancel process you can interrupt the current import process.
To reset the configuration, select Reset. Please bear in mind that the import configuration will
not directly be discarded after a successful import. Therefore, you can comfortably import multiple
objects from an export file.

Importing Reports

Select the target folder for the import. From the Objects tab, select the reports to import. To avoid
double key fields, remove the key field from all reports to import. To do this, tick the respective
option. Additionally, you may add imported variants directly to a TeamSpace. From the tool bar
select the Import options button and configure the respective TeamSpace.

Remember that reports include further objects such as datasources. They will only be im- ported if
you set the relevant configuration options (refer to Importing of datasources). If you fail to set
these options, the relevant fields will remain empty after the import.

Importing Datasources

Datasources are imported in the same way as reports. In the settings you define a target folder and
from the Objects tab you select the objects to import. You have the option to specify a Default
Datasource which will be entered at all locations where you want to avoid to import a datasource
that was included in the export. For instance, if you run a test and a production system and you
wish to move reports from the test system to the production system, the underlying datasource is
usually the one of the production system. Select the production datasource via the option Default
Datasource; it will then be entered in all relevant reports and parameters while importing.

Importing Users and Files

Users or files are imported in the same way as reports. Here there are no further options available.

122

Chapter 11

Scheduling of Reports

ReportServer supports the timed execution of reports. In this section we will discuss how to view
existing jobs with the administration interface as well as how to configure conditional schedule jobs.
For a description of how to configure the e-mail server as well as the notifications about completed
(or failed) executions refer to the ReportServer configuration guide.

The Scheduling module enables the user to browse their own jobs, to change or archive them.
In addition, the module offers a variety of information on each job such as given times for next
executions, or information on possible errors in previous executions. A detailed description on how
to work with the module is given in the ReportServer user manual in section Scheduling.

The Administrator can call up an extended form of the Scheduling module via the Administration
module. Here you see the jobs of all users, and, if required, may change or remove them. Please
consider that after having changed a scheduler job, your user account will be entered in Scheduled
by, and the user who originally created the job cannot edit it afterwards any more if the user is not
an owner.

During Scheduling three different Scheduling Actors are important:

The executor The executor is the user as which the report will be executed. Thus, this determines
the permissions and the data available during report execution. Allowing to change the
executor is useful e.g. if the original executor leaves the organization: the scheduler
administrator is able to simply change the executor by a couple of clicks. The executor
may only be changed by the Scheduler Administrator.

The owners The owners are users that are able to change a scheduled job. The job owners may
change the complete job definition, but they can not change the job executor if they are
not Scheduler Administrators. Allowing a job to have more than one owner is useful if
the original job owner is out of office for some weeks, e.g. in vacation, and the job has to
be changed by someone else during this time. Defining multiple owners allows all owners
to change a job without having to give them Scheduler Administrator permissions.

The recipients Recipients are the users that get the scheduled report e.g. by e-mail.

125

11. Scheduling of Reports

11.1 Technical Backgrounds to Scheduler Jobs

In the following we want to give a few technical details on scheduler job (or entries). A scheduler
entry consists of a so-called job and one or more actions each. Here the job describes how to
execute the report (further jobs could be the time controlled execution of scripts; refer to section
“Scheduling of reports”), whereas actions describe what to do with the result (the completed report).
At present, there are two options: Sending by e-mail or storing the result in a TeamSpace for later
retrieval. Often instead of speaking of a scheduler entry (i.e., job plus actions) we simply speak of
a scheduler job.

Errors may occur here on all levels. Running a job just as well as running individual actions might
fail. If a report is not executable (for example, because the underlying data model has changed),
the job cannot be executed. An example for a possible failure on the action level is that the e-mail
server cannot be reached which would interrupt the sending of report results.

To display detailed information on successful or failed scheduler entries, from the list (on the left)
select the respective entry and then double click in the details pane on a specific execution. In
the pop-up window that opens, you will be given detailed information on the execution split up in
job and actions. If there is a failure here you will be given a stack trace of the execution to draw
conclusions as to what might be the failure cause.

If, for instance, the connection to the datasource is not available at the moment of execution,
ReportServer will produce an error message similar to the following one:

net.datenwerke.rs.core.service.reportmanager.exceptions.ReportExecutorException: The
report could not be executed: Could not open connection to: jdbc:mysql://demo.db.raas.
datenwerke.net:3306/ClassicModels with user: demo. java.sql.SQLException: Timed out
waiting for a free available connection.

11.2 Filtering by the Status of a Job

From the filters in the tool bar you can search for a specific job by its failure status. ReportServer
jobs are always in one of 4 statuses.

Inactive The job is currently inactive If another execution at a later time is pending, the
job will be selected at that time by the disposition module and prepared for
execution.

Waiting to be executed If a job has been selected by the scheduler for execution, it will change to the
status “Waiting to be executed”. It will remain in this status until a free worker
thread will start the execution.

Executing The job is being executed.

Critical failure This status will be set if an unforeseeable error occurred that requires manual
action. The job will be exempt from further execution until the status is manually
restored. To reset the status to “Inactive”, click on the respective job and in
Details double click on the field Execution status.

126

11.3. Notifications

11.3 Notifications

After a scheduler job was executed ReportServer sends a notification by e-mail. If the report was
scheduled into a TeamSpace, you can add a link to the completed report. Configure notification texts
in the configuration file etc/scheduler/scheduler.cf. For further information on the configuration
refer to the ReportServer configuration guide.

11.4 Terminal Commands

The terminal allows you to control the scheduler, e.g. to manually terminate or restart it. For
further information refer to Section 17.53 (command scheduler).

11.5 Conditional Scheduling

Beside regular scheduling of reports, ReportServer also supports conditional scheduling of reports.
This allows users to specify requirements that will be checked before execution and only if they
hold the job will be executed (refer to the ReportServer user manual section Scheduling). Possible
ReportServer conditions will be configured with dynamic lists that have a single result line. Here is
such a dynamic list that could be used as a scheduler condition:

A B C D

5 17 23 42

The list consists of four attributes A, B, C, D. If the list has been configured as a scheduler
condition, users now can define conditions based on this list. ${} formula expressions define the
conditions (here the user does not have to delimit the expression by “${” and “}”. A feasible
condition based on the list available would for instance be:

${A > 10 && D != 1}

Now, prior to execution, the expression would be compared to the current report values. Only if the
condition evaluates to TRUE, the job will be executed.

11.6 Creating and Using a Condition Report

In this section, we will give an example of how to create a conditional report, That is, the
corresponding variant can be set to be executed in a conditional manner, i.e. only if the given
condition is met during the scheduled execution time. Note that only variants may be scheduled.

First of all, a condition report must be created. The condition report is a variant of a dynamic list
which we will use during conditional scheduling.

The demo data comes with the table T_AGG_PRODUCT, which contains information about
products. As an example, we create a variant of the T_AGG_PRODUCT as a condition report.
We select the PRO_PRODUCTNAME column and we will set the condition to be met if this
column contains at least 10 entries.

127

11. Scheduling of Reports

For this purpose, open the T_AGG_PRODUCT report (Administration - Reports). Select the
column PRO_PRODUCTNAME and set the aggregate function “Count”. You can enter an alias
for your column, e.g. NUMBER_OF_PRODUCTS. Save the report as a variant and call this
“min10_Condition”. Note that you need to ensure that your condition report only always returns a
single row. In the above example, the report contains only the column PRO_PRODUCTNAME.

Creating a condition

Now that you have defined a condition report, it is time to create the condition.

In this example, you will create a condition that uses the condition report “min10_Condition” you
previously created. To do this, open the terminal (CTRL + ALT + T) and enter the following
command:

rcondition create id:Report:152649 min10_Condition myCondition "Min 10 entries"

The easiest to provide the report is via id. In the example the id is 152649 so you can use the
above command. You can find more information on the syntax of the rcondition command in
Section 17.48.

Note: The id for the report can be found in the heading line of the variant. In our example, the id
of the condition report “min10_Condition” is 152649.

ReportServer confirms the creation of the condition with a “Condition created” message. You
can check the existing conditions via the rcondition list command, and remove conditions with
rcondition remove.

Using the condition while scheduling

Finally, we have a condition and can now use it when scheduling. For this, when you sched-
ule a report, make sure to check the box “advanced options” on the first page of the schedul-
ing wizard. Coose the dynamic list report T_AGG_PRODUCT for scheduling and select two
columns: PRO_PRODUCTNAME and Y_AVG_PRICE. Save this report as a variant under the
name “Productname_avgPrice”. This is the variant being scheduled using the condition report
“min10_Condition” previously created.

Open the variant “Productname_avgPrice” and click on “Schedule”. Check “advanced options” and
follow all steps until you reach the “Conditional Scheduling” dialog. Click on “Add condition” and
select the condition “min10_Condition”.

After clicking on the “Submit” button you can define the actual condition using a condition formula.
In our example, you can use the formula PRO_PRODUCTNAME >= 10, which means that the condition
holds if the number of products (PRO_PRODUCTNAME) is at least 10. You can test the condition for
validity with the “test condition” button.

With this, the conditional scheduling is ready. Before the report is executed while scheduling, the
condition is checked for validity. If the condition is true, the report is executed and sent.

128

11.7. Predefined Conditions

Note: Setting the option “If the conditions do not hold” you can define the behavior if the condition
is not true. Either skip the execution (which is probably the usual case) or retry the execution.

11.7 Predefined Conditions

The ReportServer administrator is also able to create predefined conditions by scripting. The
scheduling users can select the desired condition(s) from the set of conditions predefined. In such a
way, the users do not have to type formulas, which improves user experience and avoids common
errors. As a standard predefined scheduler condition, ReportServer has a “not empty” condition. It
allows to prevent sending a report if it is empty.

It is important to emphasize that completely new conditions may be created by scripting. As an
example, please take a look at the following simple script. It allows report execution during working
days, while during the weekend, the report execution is disabled.

import net.datenwerke.rs.condition.service.condition.hooks.ConditionProviderHook
import net.datenwerke.rs.condition.client.condition.dto.SimpleCondition
import java.util.Calendar

def HOOK_NAME = "IS_WORKINGDAY_HOOK"

def callback = [
provideConditionFor: { report ->

 SimpleCondition cond = new SimpleCondition();
cond.setKey(HOOK_NAME);
cond.setName("Is working day");
cond.setDescription("Actions are executed if today is a working day");
return cond;

},
 consumes: { key -> return HOOK_NAME.equals(key); },
 execute: { key, expression, user, rjob ->
 Calendar c1 = Calendar.getInstance();
 c1.setTime(new Date());
 return (c1.get(Calendar.DAY_OF_WEEK) == Calendar.SATURDAY ||
 c1.get(Calendar.DAY_OF_WEEK) == Calendar.SUNDAY) ? false: true;
 },
isBeforeActions: { -> return true; },
isBeforeJob: { -> return true; },

] as ConditionProviderHook

GLOBALS.services.callbackRegistry.attachHook(HOOK_NAME, ConditionProviderHook. ⤦
 Ç class, callback)

This script may be saved in the startup.d folder for execution at ReportServer startup. The
predefined condition “Is working day” is then available for users during scheduling definition.

11.8 Defining a Simple Condition via Scripting

Alternatively, the conditions can also be defined via a small script. The basic outline of the script is:

129

11. Scheduling of Reports

import net.datenwerke.scheduler.service.scheduler.hooks.SchedulerExecutionHook
import net.datenwerke.scheduler.service.scheduler.hooks.adapter. ⤦

 Ç SchedulerExecutionHookAdapter
import net.datenwerke.rs.scheduler.service.scheduler.jobs.report.ReportExecuteJob
import net.datenwerke.rs.base.service.reportengines.table.entities.TableReport
import net.datenwerke.rs.base.service.reportengines.table.output.object. ⤦

 Ç CompiledTableReport
import net.datenwerke.scheduler.service.scheduler.helper.SkipJobExecution
def HOOK_NAME = "SkipEmptyListSchedulerHook";
def callback = [
 doesVetoExecution : { job, logEntry ->
 if(job should not be executed)
 return new SkipJobExecution("No data")
 }
] as SchedulerExecutionHookAdapter
GLOBALS.services.callbackRegistry.attachHook(HOOK_NAME, SchedulerExecutionHook. ⤦

 Ç class, callback)

So, basically, you implement the method doesVetoExecution as part of hook SchedulerExecutionHook.
One example implementation, which checks whether or not the report contains any data (note that
this only works with dynamic lists) would be:

import net.datenwerke.scheduler.service.scheduler.hooks.SchedulerExecutionHook
import net.datenwerke.scheduler.service.scheduler.hooks.adapter. ⤦

 Ç SchedulerExecutionHookAdapter
import net.datenwerke.rs.scheduler.service.scheduler.jobs.report.ReportExecuteJob
import net.datenwerke.rs.base.service.reportengines.table.entities.TableReport
import net.datenwerke.rs.base.service.reportengines.table.output.object. ⤦

 Ç CompiledTableReport
import net.datenwerke.scheduler.service.scheduler.helper.SkipJobExecution
def HOOK_NAME = "SkipEmptyListSchedulerHook";
def callback = [
 doesVetoExecution : { job, logEntry ->
 if(job instanceof ReportExecuteJob && job.getReport() instanceof TableReport){
 job.doExecute()
 if(job.getExecutedReport() instanceof CompiledTableReport && !job. ⤦

 Ç getExecutedReport().hasData()){
 return new SkipJobExecution("No data")
 }
 }
 }
] as SchedulerExecutionHookAdapter
GLOBALS.services.callbackRegistry.attachHook(HOOK_NAME, SchedulerExecutionHook. ⤦

 Ç class, callback)

For a general introduction to scripting, refer to the Scripting Guide.

130

Chapter 12

Theming

ReportServer Enterprise Edition comes with a simple theming mechanism that allows you to adapt
the look and feel of ReportServer and easily integrate adapt it to fit your corporate identity. The
theming is controlled via the configuration file /fileserver/etc/ui/theme.cf. This file could
look like

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <theme type="default">
 <header>
 <height>40</height>
 </header>
 <logo>
 <login>

 <html><![CDATA[<i class="icon-rs-logo rs-login-logo"></i><span class="rs- ⤦
 Ç login-bg"><i class="icon-rs-logo-square"></i>]]></html>

 <width>200px</width>
 </login>
 <header>
 <html><![CDATA[<i class="icon-rs-Report"></ ⤦

 Ç i><i class="icon-rs-Server"></i>]]></html>
 <width>185px</width>
 </header>
 <!--<url>Some URI pointing to a Logo</url> -->
 </logo>

 <colors>
 <color name="white" color="#FFFFFF"/>
 <color name="black" color="#000000"/>
 <color name="black-almost" color="#132834"/>

 <color name="purple-dark" color="#3E4059"/>
 <color name="purple-light" color="#DFE0EB"/>

 <color name="gray-light" color="#EEEEEE"/>
 <color name="gray-dark" color="#B8BDC0"/>
 <color name="gray-very-dark" color="#6D708B"/>

133

12. Theming

 <color name="terminal-green" color="#00B000"/>
 </colors>

 <colorMapping>
 <map useFor="bg" colorRef="gray-dark"/>
 <map useFor="bg.text" colorRef="black"/>

 <map useFor="bg.light" colorRef="white"/>
 <map useFor="light.text" colorRef="black"/>

 <map useFor="bg.shaded" colorRef="gray-light"/>
 <map useFor="shaded.text" color="#666666"/>

 <map useFor="hl.dark.bg" colorRef="purple-dark"/>
 <map useFor="hl.dark.text" colorRef="white"/>

 <map useFor="hl.light.bg" colorRef="purple-light"/>
 <map useFor="hl.light.text" colorRef="black"/>

 <map useFor="header.bg" colorRef="black-almost"/>
 <map useFor="header.text.active" colorRef="white"/>
 <map useFor="header.text.inactive" color="#BBBBBB"/>

 <map useFor="header.text.right" color="#BBBBBB"/>

 <map useFor="terminal.bg" colorRef="black"/>
 <map useFor="terminal.text" colorRef="terminal-green"/>
 <map useFor="terminal.hl.bg" colorRef="gray-very-dark"/>
 <map useFor="terminal.link" colorRef="white"/>

 <map useFor="border.light" colorRef="gray-dark"/>

 <map useFor="tbar.btn.bg" colorRef="gray-dark"/>

 <map useFor="icon.light" color="#999999"/>

 </colorMapping>

 <css>
 .icon-rs-Report {
 color: #FFF !important;
 }
 </css>

 <saikuCharts>
 <color>#1f77b4</color>
 <color>#aec7e8</color>
 <color>#ff7f0e</color>
 <color>#ffbb78</color>
 <color>#2ca02c</color>
 <color>#98df8a</color>

134

 <color>#d62728</color>
 <color>#ff9896</color>
 <color>#9467bd</color>
 <color>#c5b0d5</color>
 <color>#8c564b</color>
 <color>#c49c94</color>
 <color>#e377c2</color>
 <color>#f7b6d2</color>
 <color>#7f7f7f</color>
 <color>#c7c7c7</color>
 <color>#bcbd22</color>
 <color>#dbdb8d</color>
 <color>#17becf</color>
 <color>#9edae5</color>
 </saikuCharts>
 </theme>
</configuration>

The configuration file consists of five parts. In the first part, you can replace the logos for the login
screen, the main ReportServer screen and the documentation report. The logo used within the report
documentation is either the ReportServer logo, or an image that is specified via ${logo.url} in the
config.

The second part of the configuration allows to provide names for colors which can then later be
used to change the color scheme of ReportServer. In part three, (colorMapping) you can tell
ReportServer what colors to use for certain elements. Colors can either be set via reference to a
previously named color:

 <map useFor="header.text" colorRef="white"/>

This sets the header.text element to the color specified as white. They can be set directly

<map useFor="lighter.bg" color="#FFFFFF"/>

or they can be set by pointing to a different element. For example,

<map useFor="lighter.text" sameAs="light.text"/>

ensures that any element that uses the color lighter.text uses the same color as an element using
light.text. The following elements are currently available to be styled:

135

12. Theming

bg The background.

text Text when on background (bg).

bg.light Light variant of background. For example used as background of panels.

light.text Text on light background.

bg.shaded A shaded variant of the background. Used, for example, as the background for
toolbars.

shaded.text Text on shaded background.

bg.dark A darker variant of the background color.

border.light A color used for (thin) borders on light background.

header.bg The background of the top module bar (the header).

header.text.active Text color of active modules and logo.

header.text.inactive Text color of inactive modules.

header.text.right Text color of user name and profile.

h3> hl.dark.bg A dark highlight color.

hl.dark.text Text on the dark highlight.

hl.light.bg A lighter highlight color.

hl.light.text Text on the lighter highlight color.

tbar.btn.bg Background color of buttons in toolbars.

terminal.bg Background of the terminal.

terminal.hl.bg highlighted background of the terminal.

terminal.link Links on the terminal.

terminal.text Standard text on the terminal.

With the next versions we are planning on further fine-tuning the color classes and would be happy
for any feedback you might have.

Next, in the “css” part of the config, you can set individual CSS rules. As these rules are inserted
after any other ReportServer CSS rule, you can overwrite any ReportServer specific CSS.

Finally, in the “saikuCharts” section, you can change the color theme used in Saiku/Mondrian report
charts. You can use either hexadecimal color notation as in the example above, or named colors
from the “colors” list, e.g. “purple-light”.

136

Chapter 13

Terminal

The ReportServer Terminal is a mighty tool for administrators. You open it with the keyboard
shortcut CTRL+ALT+T (Please consider that you need the respective rights; refer to Chapter 3 User
and Permission Management).

The ReportServer Terminal follows the shell of a Unix system. It includes a command prompt as
well as a history of commands and the respective outputs. Beside general commands, the Terminal
provides access to almost all ReportServer objects via the Virtual file system. In addition, the
Terminal can be used to enter and execute scripts.

13.1 Using the Terminal

Enter commands at the command prompt and confirm with ENTER. The following command:

reportserver$ hello

will return the reply

> hello user

There are two different types of commands. Simple commands will provide their output directly in
the Terminal. This applies for the majority of commands. Beside the simple ones there are also
commands requiring further user interaction. After calling up this type of command, the command
prompt will change and display a single opening angle bracket. The eliza program represents an
example for this command type (originally by Joseph Weizenbaum, and here in an adaptation by
Jesper Juul). You close complex commands with CTRL+C, or according to eliza also by entering the
leave-taking expression: bye

reportserver$ eliza

ELIZA
CREATIVE COMPUTING
MORRISTOWN, NEW JERSEY
ADAPTED FOR IBM PC BY
PATRICIA DANIELSON AND PAUL HASHFIELD
Java version February 24th, 1999
By Jesper Juul - jj@pobox.com.

139

13. Terminal

> Hi, my name is Bob.
HI! I"M ELIZA. WHAT"S YOUR PROBLEM?
I DON"T CARE ABOUT NAMES --PLEASE GO ON.
> I do not know. Isn"t that why I am here?
HOW LONG HAVE YOU BEEN HERE?
> About one minute or so.
WHAT DOES THAT SUGGEST TO YOU?
> I guess you cannot help me after all.
OH, I CANNOT HELP YOU AFTER ALL.
> bye
Good Bye
reportserver$

The -h flag (or -? flag) offers help to a command listing the individual options. When pressing
the TAB key, ReportServer attempts to complete the command presently entered. If it fails to do
so because there are several options, these will be shown to you by pressing the TAB key again.
With the arrow keys UP/DOWN you browse through the history of your commands. To clear the
Terminal window, use the clear command.

You can leave the Terminal by entering the exit command.

You will find a command overview including a short description of all available commands in
Chapter 17.

Tip: To copy data from the Terminal window, press the CTRL key when selecting the data.
Otherwise, the cursor in the command prompt will be activated when clicking on the window.

13.2 The Virtual File System

ReportServer integrates various objects (reports, datasources, files, etc.) as virtual file systems
in the Terminal. Each object tree (e. g. the report section) has here an own root node. When
you open the Terminal you first arrive at the top level. Here you find the root nodes of the various
virtual file systems. By entering the command ls you can display them.

reportserver$ ls
datasources Datasource management
reportmanager Report management
dashboardlib Dashboard library
fileserver File system
tsreport TeamSpaces
usermanager User management

Here ls shows the objects in the current directory. By entering the command pwd the current
directory will display.

reportserver$ pwd
/

140

13.2. The Virtual File System

Use the command cd directory to change the directory. Multiple folders will be separated by /
(slash). So, by entering

cd "reportmanager/Dynamic Lists/"

you can switch to the folder Dynamic lists in the report management tree. Please observe to set
quotation marks when there are objects that include spaces in their name. When you enter mkdir,
you can create a new sub-folder.

reportserver$ mkdir newFolder reportserver$ ls -l
12 T_AGG_ORDER - Basis TableReport TableReport
17 T_AGG_PAYMENT - Basis TableReport
22 T_AGG_CUSTOMER - Basis TableReport
26 T_AGG_PRODUCT - Basis TableReport
33 T_AGG_EMPLOYEE - Basis TableReport
39 T_AGG_ORDER - Parametrized TableReport
49 newFolder ReportFolder

This is the output of ls -l which returns name and object as well as ID and type. Now, to move
all reports to the new folder, use

reportserver$ mv T_AGG_* newFolder/
reportserver$ ls -l newFolder
17 T_AGG_PAYMENT - Basis TableReport
33 T_AGG_EMPLOYEE - Basis TableReport
12 T_AGG_ORDER - Basis TableReport
22 T_AGG_CUSTOMER - Basis TableReport
39 T_AGG_ORDER - Parametrized TableReport
26 T_AGG_PRODUCT - Basis TableReport

Be aware that the mv command at present expects the second parameter always to be a directory
in contrast to the Unix equivalent. This is why it cannot be used to rename objects.

Now we switch to the FileServer and create a temporary directory:

reportserver$ cd /fileserver/
reportserver$ mkdir tmp
reportserver$ cd tmp
reportserver$ pwd
/fileserver/tmp

Unlike typical file systems, ReportServer allows two objects having the same name in one folder.
For example, two reports with identical names will be in the same report section. We can simulate
this by creating two folders with the same name:

reportserver$ mkdir test
reportserver$ mkdir test
reportserver$ ls -l
124 test FileServerFolder
125 test FileServerFolder

Now, what will happen if we change to the test folder by entering cd test?

reportserver$ cd test
reportserver$ pwd

141

13. Terminal

/fileserver/tmp/test

We have switched to the test folder. But to which one did we switch? Internally, ReportServer
saves paths not via their names, but via the ID of objects which are unique in the individual virtual
file systems. By entering pwd -i they will display.

reportserver$ pwd -i
/fileserver/id:123/id:124

As you see, we changed to the first test folder with the ID 124. To get to the second one with the
ID 125, use the internal path:

reportserver$ cd ../id:125
reportserver$ pwd
/fileserver/tmp/test
reportserver$ pwd -i
/fileserver/id:123/id:125

In FileServer (i.e. in the virtual file system which represents ReportServer FileServer) we can use
the commands createTextFile and editTextFile to create or edit text files.

reportserver$ createTextFile text.txt
file created

By entering cp now we can copy this text to other folders.

reportserver$ cp text.txt ..
reportserver$ cd ..
reportserver$ ls -l
124 test FileServerFolder
125 test FileServerFolder
127 text.txt FileServerFile

To delete objects, use the rm command. Here wildcards can be used.

reportserver$ rm tes*
/fileserver/tmp/test has children

Here, ReportServer stated that the folder to delete still holds objects. To include them in the
deletion, use rm -r.

reportserver$ rm -r tes*
reportserver$ ls -l
127 text.txt FileServerFile

13.3 Assigning Aliases

For some recurring commands it might be useful to define shortcuts (aliases). To do this, use
the configuration file etc/terminal/alias.cf (You will find it in the ReportServer File system,
from the Terminal you will access it by entering /fileserver/etc/terminal/). If the file does
not exist, create the respective directories by entering mkdir and the file with createTextFile.

The file is structured as follows

<?xml version="1.0" encoding="UTF-8"?>

142

13.4. Scripts

<configuration>
<cmdaliases>
<entry>
<alias>ll</alias>
<command>ls -l</command>

</entry>
 </cmdaliases>
</configuration>

Here, alias ll was assigned to the command ls -l. To reload the aliases, use:

reportserver$ config reload
configuration reloaded

Thus, the cache which stores all configuration files will be reloaded by entering the command above.
As an alternative, you can restart your ReportServer for reloading config files.

13.4 Scripts

A main task of the Terminal is to manage and execute scripts. In ReportServer scripts can be used
for various purposes. Firstly, they can be used to create dynamic or complex reports. As they have
access to the Java runtime environment and with this to the available metadata, scripts are perfectly
suited for reports analyzing the system status. An example for a script report is the documentation
report (for further information on script reports refer to Section 7.9). In addition, scripts can also
be used for administrative tasks, or even to expand the functionality of ReportServer. Within the
scope of this Administrator manual, we will give you some insight into the world of ReportServer
scripts in the following section. You will find a detailed treatment including examples and concepts
in our script guide.

Warning: The right to write scripts allows a user to execute arbitrary code. This right should thus
only be granted to trusted system administrator’s.

13.5 Object Resolver

The following describes how to locate entities. Entities are stored objects such as reports, users
or TeamSpaces. You can find entities by searching for classes annotated with @Entity. You can
also find a list of all entities in our ReportServer SourceForge project https://sourceforge.net/
projects/dw-rs/. Download the latest apidocs file from the src directory for this. Further, you
can also find all entities for the current ReportServer version here: https://reportserver.net/
api/latest/entities.html.

Many terminal commands provide you with an object resolver to find a specific entity or a group of
entitities. Currently, there are three object resolvers:

ID Resolver Allows you to locate an entity by its entity ID.

Path Resolver Allows you to find an entity by its Virtual File System path.

HQL Resolver Allows you to find entities by a HQL (Hibernate Query Language) query.

143

https://sourceforge.net/projects/dw-rs/
https://sourceforge.net/projects/dw-rs/
https://reportserver.net/api/latest/entities.html
https://reportserver.net/api/latest/entities.html

13. Terminal

We will illustrate these object resolvers by using the locate command. Any other command supporting
object resolvers works analogously to the examples provided below.

The locate command allows you, as its name suggests, to locate entities by using an object resolver
query. Refer to the locate command documentation for more information on this.

The ID object resolver uses an entity ID for locating an entity. Since entity IDs are unique, the
query resolves to zero or one entity. The syntax is: id:EntityType:entityId where EntityType is
the specific entity class, e.g. TableReport. Refer to the entity list mentioned above for the specific
entity types. entityId is the specific entity ID. E.g.:

reportserver$ locate id:TableReport:123
Report Root/Dynamic Lists/myReport (Reportmanager)

The path resolver requires a Virtual File System path for locating the specific entity. Note that the
path requires quotation marks if it contains spaces. E.g.:

reportserver$ locate "/reportmanager/Dynamic Lists/myReport"
Report Root/Dynamic Lists/myReport (Reportmanager)

You can also insert a relative path to the current location, e.g.:

reportserver$ locate myReport
Report Root/Dynamic Lists/myReport (Reportmanager)

Further, you can use an HQL query (Hibernate Query Language) for locating the needed entity or
group of entities. Refer to https://docs.jboss.org/hibernate/orm/5.0/userguide/en-US/
html/ch13.html for the HQL documentation. The syntax is: hql:query where the query is a valid
select HQL query. Since HQL queries have blank spaces, quotation marks are needed. E.g.:

reportserver$ locate "hql:from TableReport where id=123"
Report Root/Dynamic Lists/myReport (Reportmanager)

You can also search for entity attributes, e.g.:

reportserver$ locate "hql:from TableReport where name like '%myReport%'"
Report Root/Dynamic Lists/myReport (Reportmanager)
Report Root/myReport2 (Reportmanager)

Following you can find a list of some important entity types, which can be used with the object
resolvers described above. The complete list can be found here: https://reportserver.net/
api/latest/entities.html

Report entities:

Report General report entity. Example: locate id:Report:123

TableReport Dynamic list. Example: locate id:TableReport:123

BirtReport BIRT report. Example: locate id:BirtReport:123

CrystalReport Crystal report. Example: locate id:CrystalReport:123

GridEditorReport Grid editor report. Example: locate id:GridEditorReport:123

144

https://docs.jboss.org/hibernate/orm/5.0/userguide/en-US/html/ch13.html
https://docs.jboss.org/hibernate/orm/5.0/userguide/en-US/html/ch13.html
https://reportserver.net/api/latest/entities.html
https://reportserver.net/api/latest/entities.html

13.5. Object Resolver

JasperReport Jasper report. Example locate id:JasperReport:123

JxlsReport JXLS report. Example locate id:JxlsReport:123

SaikuReport Saiku report. Example: locate id:SaikuReport:123

ScriptReport Script report. Example: locate id:ScriptReport:123

ReportFolder Report folder. Example: locate id:ReportFolder:123

User entities:

User User. Example: locate id:User:123

Group Group. Example: locate id:Group:123

OrganisationalUnit Organisational unit. Example: locate id:OrganisationalUnit:123

Datasource entities:

DatasourceDefinition General datasource definition entity. Example: locate id:DatasourceDefinition:123

DatabaseDatasource Relational database. Example: locate id:DatabaseDatasource:123

CsvDatasource CSV datasource. Example: locate id:CsvDatasource:123

MondrianDatasource Mondrian datasource. Example: locate id:MondrianDatasource:123

BirtReportDatasourceDefinition BIRT report datasource. Example: locate id:BirtReportDatasourceDefinition:123

ScriptDatasource Script datasource. Example: locate id:ScriptDatasource:123

DatabaseBundle Database bundle. Example: locate id:DatabaseBundle:123

DatasourceFolder Datasource folder. Example: locate id:DatasourceFolder:123

Datasink entities:

DatasinkDefinition General datasink definition entity. Example: locate id:DatasinkDefinition:123

EmailDatasink Email - SMTP datasink. Example: locate id:EmailDatasink:123

TableDatasink Table datasink. Example: locate id:TableDatasink:123

SftpDatasink SFTP datasink. Example: locate id:SftpDatasink:123

FtpsDatasink FTPS datasink. Example: locate id:FtpsDatasink:123

FtpDatasink FTPS datasink. Example: locate id:FtpDatasink:123

SambaDatasink Samba - SMB/CIFS datasink. Example: locate id:SambaDatasink:123

145

13. Terminal

ScpDatasink SCP datasink. Example: locate id:ScpDatasink:123

LocalFileSystemDatasink Local Filesystem datasink. Example: locate id:LocalFileSystemDatasink:123

DropboxDatasink Dropbox datasink. Example: locate id:DropboxDatasink:123

OneDriveDatasink OneDrive - SharePoint (O365) datasink. Example: locate id:OneDriveDatasink:123

GoogleDriveDatasink Google Drive datasink. Example: locate id:GoogleDriveDatasink:123

AmazonS3Datasink Amazon S3 datasink. Example: locate id:AmazonS3Datasink:123

BoxDatasink Box datasink. Example: locate id:BoxDatasink:123

DatasinkFolder Datasink folder. Example: locate id:DatasinkFolder:123

File System entities:

FileServerFile File. Example: locate id:FileServerFile:123

FileServerFolder Folder. Example: locate id:FileServerFolder:123

146

Chapter 14

ReportServer Scripting

ReportServer Enterprise Edition comes with scripting support. Scripts can be used in a variety of
ways and can, for example, serve as a basis for reports and datasources, perform administrative
tasks, or even contribute new functionalities. In this section we want to give you an introduction
to the comprehensive script subject, and make you familiar with the various options provided by
ReportServer scripts. Scripts and their fields of use will be treated in the ReportServer script manual
in detail.

ReportServer scripts are written in Groovy (http://groovy-lang.org/) and run in the same VM
where ReportServer is located. The decisive advantage here is that the scripts have access to the
complete set of services provided by ReportServer. However, it also means that scripts represent a
potential security and stability risk. Persons who are authorized to write or change scripts have full
access to the system. The permissions to write scripts should thus be granted with care.

The following explanations address persons with basic knowledge in programming. Java and/or
Groovy experience are not necessarily required but might be helpful. Under https://groovy-lang.
org/ you will find many excellent tutorials on programming in Groovy.

Scripts are located in the internal file manager, by default beneath folder bin. Several configuration
options can be configured in configuration file /etc/scripting/scripting.cf (also see the
ReportServer configuration guide).

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<scripting>
<enable>true</enable>
<restrict>
<location>bin</location>

</restrict>
<startup>
<login>fileserver/bin/onlogin.groovy</login>
<rs>fileserver/bin/onstartup.groovy</rs>

</startup>
<cache>
<maxsize>10000</maxsize>
<expiresafter>30</expiresafter> <!-- in minutes -->

149

http://groovy-lang.org/
https://groovy-lang.org/
https://groovy-lang.org/

14. ReportServer Scripting

 </cache>
</scripting>

</configuration>

The first option allows the global deactivation of scripts. Please consider that if you apply it, you
will not be able to use script reports anymore, and that the documentation report available in the
demo data will not work any longer. By the second option (restrict.location) you will define a
root folder in which scripts have to be filed. This allows to give access rights for the file system to
individual users without enabling them to create or change scripts.

The next section (startup) allows to configure two special scripts. As soon as a user has signed on,
the onlogin script will run with the rights of this user. Here, for instance, interface enhancements
can be loaded. To do this, ensure to grant users the execute right for the script. The start-up script,
on the other hand, will run when starting the system. Note that then the script is run without any
logged in user. Instead of specifying scripts, you can also specify folders. In this case, all scripts
within the folder are executed.

The cache section controls the internal script caching mechanism. This is used for performance
reasons, e.g. for not recompiling the same script twice when used frequently. The maxsize setting
specifies the maximum number of entries the cache may contain. The expiresafter specifies
that each entry should be automatically removed from the cache once the given fixen duration has
elapsed after the entry’s creation, or the most recent replacement of its value.

Note that you can manually clear script cache using the clearInternalScriptCache terminal
command.

14.1 A first Hello World

In the following we want to present a simple sample script. Open the terminal (press CTRL+ALT+T)
and switch to the directory fileserver/bin (if you failed to create this directory so far, create it
by using mkdir).

reportserver$ cd fileserver/bin

Now, create a tmp directory and switch to it.

reportserver$ mkdir tmp
reportserver$ cd tmp/

We can now create your a first ReportServer script by issuing createTextFile hello1.groovy. The
extension .groovy has no relevance here, although, it has established as a standard for scripts
(besides .groovy, .rs is frequently used):

reportserver$ createTextFile hello1.groovy
file created

A pop-up window opens to edit the newly created file. For our first simple Hello World script we
only want to induce the script to return Hello World. By default, scripts return the result of the
last statement. So we can write the Hello World script simply by entering:

"Hello World"

150

14.2. How to Handle Errors

Close the dialogue by clicking on the Submit button. With the "exec" command you can run the
script.

reportserver$ exec hello1.groovy
Hello World

14.2 How to Handle Errors

Before we continue, we will have a brief look at an error case. If the execution of a script fails,
ReportServer will print an error message which tries to pin point the error. Let us consider the
following simple script. Here we forgot to place the closing quotation mark:

return "Hello World

Here the error message would be as follows:

reportserver$ exec helloFail.groovy
Script execution failed.
error message: startup failed:
Script2.groovy: 1: unexpected char: 0xFFFF @ line 1, column 20.
return "Hello world
^

1 error
(java.util.concurrent.ExecutionException)
script arguments:
file: helloFail.groovy (id: 10074, line 1)
line number: 1
col. number: 20

Here the error message points to the problem: there is an unexpected character in line 1. In some
cases, however, the error message might be insufficient to pinpoint the problem. In this case, you
can tell ReportServer to print a detailed stack trace of the execution by running the script with the
-t flag. In this case the output would be similar to the following

reportserver$ exec -t helloFail.groovy
net.datenwerke.rs.scripting.service.scripting.exceptions.ScriptEngineException: javax.script. ⤦

 Ç ScriptException: org.codehaus.groovy.control.MultipleCompilationErrorsException: startup failed ⤦
 Ç :

Script17.groovy: 1: unexpected char: 0xFFFF @ line 1, column 20.
return "Hello world
^

1 error

------- SCRIPT ERROR INFO -------
Script execution failed.
error message: startup failed:
Script17.groovy: 1: unexpected char: 0xFFFF @ line 1, column 20.
return "Hello world
^

1 error
(java.util.concurrent.ExecutionException)
script arguments:
file: helloFail.groovy (id: 10074, line 1)
line number: 1
col. number: 20

at net.datenwerke.rs.scripting.service.scripting.engines.GroovyEngine.eval(GroovyEngine.java:107)

151

14. ReportServer Scripting

at net.datenwerke.rs.scripting.service.scripting.ScriptingServiceImpl.executeScript(ScriptingServiceImpl ⤦
 Ç .java:217)

at net.datenwerke.rs.scripting.service.scripting.ScriptingServiceImpl.executeScript(ScriptingServiceImpl ⤦
 Ç .java:263)

at net.datenwerke.rsenterprise.license.service.EnterpriseCheckInterceptor.invoke(⤦
 Ç EnterpriseCheckInterceptor.java:35)

at net.datenwerke.rs.scripting.service.scripting.ScriptingServiceImpl.executeScript(ScriptingServiceImpl ⤦
 Ç .java:317)

at net.datenwerke.rsenterprise.license.service.EnterpriseCheckInterceptor.invoke(⤦
 Ç EnterpriseCheckInterceptor.java:35)

at net.datenwerke.rs.scripting.service.scripting.ScriptingServiceImpl.executeScript(ScriptingServiceImpl ⤦
 Ç .java:288)

at net.datenwerke.rsenterprise.license.service.EnterpriseCheckInterceptor.invoke(⤦
 Ç EnterpriseCheckInterceptor.java:35)

at net.datenwerke.rs.scripting.service.scripting.terminal.commands.ExecScriptCommand.doRollbackExecute(⤦
 Ç ExecScriptCommand.java:335)

at com.google.inject.persist.jpa.JpaLocalTxnInterceptor.invoke(JpaLocalTxnInterceptor.java:66)
at net.datenwerke.rs.scripting.service.scripting.terminal.commands.ExecScriptCommand$1$1.doFilter(⤦

 Ç ExecScriptCommand.java:272)
at com.google.inject.servlet.FilterChainInvocation.doFilter(FilterChainInvocation.java:66)
at com.google.inject.servlet.FilterDefinition.doFilter(FilterDefinition.java:168)
at com.google.inject.servlet.FilterChainInvocation.doFilter(FilterChainInvocation.java:58)
at com.google.inject.servlet.FilterDefinition.doFilter(FilterDefinition.java:168)
at com.google.inject.servlet.FilterChainInvocation.doFilter(FilterChainInvocation.java:58)
at com.google.inject.servlet.FilterDefinition.doFilter(FilterDefinition.java:168)
at com.google.inject.servlet.FilterChainInvocation.doFilter(FilterChainInvocation.java:58)
at com.google.inject.servlet.ManagedFilterPipeline.dispatch(ManagedFilterPipeline.java:118)
at com.google.inject.servlet.GuiceFilter.doFilter(GuiceFilter.java:113)
at net.datenwerke.rs.scripting.service.scripting.terminal.commands.ExecScriptCommand$1.call(⤦

 Ç ExecScriptCommand.java:263)
at net.datenwerke.rs.scripting.service.scripting.terminal.commands.ExecScriptCommand$1.call(⤦

 Ç ExecScriptCommand.java:1)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.lang.Thread.run(Thread.java:745)
Caused by: javax.script.ScriptException: org.codehaus.groovy.control.MultipleCompilationErrorsException: ⤦

 Ç startup failed:
Script17.groovy: 1: unexpected char: 0xFFFF @ line 1, column 20.
return "Hello world
^

1 error

at org.codehaus.groovy.jsr223.GroovyScriptEngineImpl.compile(GroovyScriptEngineImpl.java:181)
at net.datenwerke.rs.scripting.service.scripting.engines.GroovyScriptCache$1.load(GroovyScriptCache.java ⤦

 Ç :57)
at net.datenwerke.rs.scripting.service.scripting.engines.GroovyScriptCache$1.load(GroovyScriptCache.java ⤦

 Ç :1)
at com.google.common.cache.LocalCache$LoadingValueReference.loadFuture(LocalCache.java:3522)
at com.google.common.cache.LocalCache$Segment.loadSync(LocalCache.java:2315)
at com.google.common.cache.LocalCache$Segment.lockedGetOrLoad(LocalCache.java:2278)
at com.google.common.cache.LocalCache$Segment.get(LocalCache.java:2193)
at com.google.common.cache.LocalCache.get(LocalCache.java:3932)
at com.google.common.cache.LocalCache.getOrLoad(LocalCache.java:3936)
at com.google.common.cache.LocalCache$LocalLoadingCache.get(LocalCache.java:4806)
at net.datenwerke.rs.scripting.service.scripting.engines.GroovyScriptCache.get(GroovyScriptCache.java ⤦

 Ç :79)
at net.datenwerke.rs.scripting.service.scripting.engines.GroovyEngine.eval(GroovyEngine.java:73)
... 23 more
Caused by: org.codehaus.groovy.control.MultipleCompilationErrorsException: startup failed:
Script17.groovy: 1: unexpected char: 0xFFFF @ line 1, column 20.
return "Hello world
^

1 error

152

14.3. Administrative Scripts

at org.codehaus.groovy.control.ErrorCollector.failIfErrors(ErrorCollector.java:309)
at org.codehaus.groovy.control.ErrorCollector.addFatalError(ErrorCollector.java:149)
at org.codehaus.groovy.control.ErrorCollector.addError(ErrorCollector.java:119)
at org.codehaus.groovy.control.ErrorCollector.addError(ErrorCollector.java:131)
at org.codehaus.groovy.control.SourceUnit.addError(SourceUnit.java:359)
at org.codehaus.groovy.antlr.AntlrParserPlugin.transformCSTIntoAST(AntlrParserPlugin.java:137)
at org.codehaus.groovy.antlr.AntlrParserPlugin.parseCST(AntlrParserPlugin.java:108)
at org.codehaus.groovy.control.SourceUnit.parse(SourceUnit.java:236)
at org.codehaus.groovy.control.CompilationUnit$1.call(CompilationUnit.java:164)
at org.codehaus.groovy.control.CompilationUnit.applyToSourceUnits(CompilationUnit.java:928)
at org.codehaus.groovy.control.CompilationUnit.doPhaseOperation(CompilationUnit.java:590)
at org.codehaus.groovy.control.CompilationUnit.processPhaseOperations(CompilationUnit.java:566)
at org.codehaus.groovy.control.CompilationUnit.compile(CompilationUnit.java:543)
at groovy.lang.GroovyClassLoader.doParseClass(GroovyClassLoader.java:297)
at groovy.lang.GroovyClassLoader.parseClass(GroovyClassLoader.java:267)
at groovy.lang.GroovyClassLoader.parseClass(GroovyClassLoader.java:253)
at groovy.lang.GroovyClassLoader.parseClass(GroovyClassLoader.java:211)
at org.codehaus.groovy.jsr223.GroovyScriptEngineImpl.getScriptClass(GroovyScriptEngineImpl.java:366)
at org.codehaus.groovy.jsr223.GroovyScriptEngineImpl.compile(GroovyScriptEngineImpl.java:173)
... 34 more
reportserver$

Tip: With the -w flag (e.g. exec -w hello1.groovy) you can redirect the script output (or the
error output) to a separate window.

14.3 Administrative Scripts

Now, we want to develop a more comprehensive script which returns all reports that access a
defined table in the query. Here we will get acquainted with some sample services provided for
scripts. You will find a detailed description of all services in the ReportServer script manual. In
addition, the Java Doc API description by ReportServer provides you with initial information.

Now, we create our second script:

reportserver$ createTextFile searchReportByQuery.groovy
file created

The entry to be made shall include a scrap text and output all dynamic lists for which the data
connection is defined as a relational database, and the named scrap text is to be found in their
query. Scripts can access arguments via the variable (array) args. So the following script would
simply output the single argument again:

if(args.size() == 0)
return "No arguments"

args[0]

If we execute this script we get the following result:

reportserver$ exec searchReportByQuery.groovy
No argument stated
reportserver$ exec searchReportByQuery.groovy A B C
A

Please note that we leave the script in line 2 by entering a return if no argument has been stated.
In the following we want to browse through all dynamic lists. Via the GLOBALS object (an object

153

14. ReportServer Scripting

that ReportServer adds to the scope of every script) you have access to the various services and
auxiliary methods. For instance, the method getEntitiesByType allows to simply access all objects
of a defined type. Dynamic lists are internally managed as a TableReport type (in the packet
net.datenwerke.rs.base.service.reportengines.table.entities).

Tip: If you browse for a specific object in JavaDoc API (datasource, report, etc.) you will be
able to find many important objects because they are marked with the annotation @Entity.
This annotation is element of all objects that are physically represented in the database.

In order to be able to use objects, you have to import them. Subsequently, we can pass the class
related to dynamic lists (TableReport.class) to the method getEntitiesByType. By entering the
statement .each we can then run a piece of code (in Groovy language a “Closure”) for each object
found.

/* imports */
import net.datenwerke.rs.base.service.reportengines.table.entities.TableReport

/* argument handling */
if(args.size() == 0)
return "No arguments"

def searchString = args[0]
GLOBALS.getEntitiesByType(TableReport.class).each {
tout.println(it.getName())

}
""

By the object tout you can generate outputs on the console (the object is of type java.io.
PrintWriter). Within the closure you have access to the loop object, here the current report, via
the dynamically generated variable it. With this we output the name of all dynamic reports on the
console. Please also have a look at the last line of the script "". It returns an empty string, as
otherwise the return of GLOBALS.getEntitiesByType(TableReport.class). each will be output on
the console.

When running the script (please ensure to pass an argument to the script) you will find out that
not only basic reports have been processed but also the related variants. Reoprt variants inherit
from their respective base classes and will therefore also be returned by

GLOBALS.getEntitiesByType(TableReport.class)

To exclude it we will test whether the currently processed object (within the closure) is of type
ReportVariant (in the packet net.datenwerke.rs.core.service.reportmanager.interfaces).
Now, the adapted script will only return the name of base reports.

/* imports */
import net.datenwerke.rs.base.service.reportengines.table.entities.TableReport
import net.datenwerke.rs.core.service.reportmanager.interfaces.ReportVariant

/* argument handling */
if(args.size() == 0)
return "No arguments"

154

net.datenwerke.rs.base.service.reportengines.table.entities
java.io.PrintWriter
java.io.PrintWriter
net.datenwerke.rs.core.service.reportmanager.interfaces

14.4. Changing the Data Model

def searchString = args[0]
GLOBALS.getEntitiesByType(TableReport.class).each {
if(it instanceof ReportVariant)
return;

tout.println(it.getName())
}
""

Now we have nearly reached our goal. The datasource can be addressed via the field datasourceCon-
tainer.datasource, and the relational datasources are of type Database- Datasource (in the package
net.datenwerke.rs.base.service.datasources.definitions). The corresponding configura-
tion is also to be found in the datasource container (datasourceContainer.datasourceConfig)
and of type DatabaseDatasourceConfig.

/* argument handling */
if(args.size() == 0)
return "No arguments"

def searchString = args[0]
GLOBALS.getEntitiesByType(TableReport.class).each {
if(it instanceof ReportVariant)
return;

if(it.datasourceContainer?.datasource instanceof DatabaseDatasource){
def query = it.datasourceContainer?.datasourceConfig?.query
if(null != query && query =~ searchString)
tout.println(it.getName() + ": " + query)

}
}
""

Running on system with installed demo reports, the following output could result:

reportserver$ exec searchReportByQuery.rs T_AGG_ORDER
T_AGG_ORDER - Basis: SELECT * FROM T_AGG_ORDER
T_AGG_ORDER - Parametrized: SELECT * FROM T_AGG_ORDER WHERE $X{IN,

OR_CUSTOMERNUMBER, P_CUSTNUM} AND OR_ORDERDATE > ${P_DATE_FROM} AND
OR_ORDERDATE < ${P_DATE_TO}

14.4 Changing the Data Model

By using scripts, you can of course also change or create objects automatically. A slightly changed
version of the above script resets the key of the reports found.

/* imports */
import net.datenwerke.rs.base.service.reportengines.table.entities.TableReport
import net.datenwerke.rs.core.service.reportmanager.interfaces.ReportVariant

def key = 1; GLOBALS.getEntitiesByType(TableReport.class).each {
if(it instanceof ReportVariant)
return;

tout.println("set key for report " + it.getId())
it.setKey("myKey" + key++)

155

net.datenwerke.rs.base.service.datasources.definitions
datasourceContainer.datasourceConfig

14. ReportServer Scripting

}
"done"

If you execute this script you will find out that it runs smoothly, but the changes have not been
adopted.

reportserver$ exec resetReportKeys.groovy
done
set key for report 12
set key for report 17
set key for report 22
set key for report 26
set key for report 33
set key for report 39

By default, ReportServer performs a rollback on the database once the script is executed. However,
in order to commit the changes, use the -c flag.

reportserver$ exec -c resetReportKeys.groovy

14.5 Enhancing ReportServer with Scripts

Apart from the administrative tasks, scripts can be used to enhance ReportServer. Enhancements
can be hooked up on the server side just as well as integrated on various points in the interface to,
for example, display additional information, or to provide enhanced functionality. In the following
we want to present an enhancement on the server side by giving a simple example.

Imagine, we run our business properly and want to ensure that our employees will only be able to
retrieve reports during working time. Here, ReportServer provides the option to directly hook up
in the report execution and, if required, to interrupt it. In the ReportServer jargon, enhancement
interfaces are called hooks. They are provided at various locations. The easiest way to get an
overview of the enhancement interfaces is by browsing through the JavaDoc API for interfaces
which implement the interface Hook. For further information on hooks refer to the ReportServer
script guide.

To delimit the working time we implement the hook ReportExecutionNotificationHook. It will
be called up before and after report execution and allows to prevent it. In the following, a code
is given which basically implements the interface and checks the current time in the method
doVetoReportExecution, and if it lies outside the range of 9 a.m to 5 p.m it throws an exception.
The callback will be “hooked in” added to the last line.

import net.datenwerke.rs.core.service.reportmanager.exceptions.*
import net.datenwerke.rs.core.service.reportmanager.hooks.*

def HOOK_NAME = "PROHIBIT_EXECUTION"
def callback = [
notifyOfReportExecution : { report, parameterSet, user, outputFormat, configs -> },
notifyOfReportsSuccessfulExecution : { compiledReport, report, parameterSet, user,

outputFormat, configs -> },
notifyOfReportsUnsuccessfulExecution : { e, report, parameterSet, user, outputFormat,

configs -> },
doVetoReportExecution: { report, parameterSet, user, outputFormat, configs ->
def cal = Calendar.instance
def hour = cal.get(Calendar.HOUR_OF_DAY)

156

14.6. Scheduling of Scripts

if(hour > 17 || hour < 9)
throw new ReportExecutorException("Please come back during office hours");

}
] as ReportExecutionNotificationHook

GLOBALS.services.callbackRegistry.attachHook(HOOK_NAME, ReportExecutionNotificationHook.class,
callback)

Now, if you try to run a report after 6 p.m. you will be welcomed with the message “Please come
back during office hours.”.

Please ensure to give the hook a name. By doing so, you prevent to apply the hook repeatedly
when running the script repeatedly. Use the following script to remove the hook:

def HOOK_NAME = "PROHIBIT_EXECUTION"
GLOBALS.services.callbackRegistry.detachHook(HOOK_NAME)

Tip: Use the onStartup or onLogin script to hook up enhancements automatically.

14.6 Scheduling of Scripts

Scripts can be planned by a timer controlled schedule. To do this, use the scheduleScript command.
For further information refer to Chapter 17.

14.7 Accessing Scripts by URL

Similar to accessing files, you can also directly access scripts by URL:

http://SERVER/APPLICATIONFOLDER/reportserver/scriptAccess?id=XX

The following URL attributes can be used

id ID of a file.

path Path leading to a file, e.g. bin/script.groovy

args Arguments passed on to the script.

exception true to receive an error message in case of a failure

If you want to pass more than one argument to the script, you can achieve this separating
the arguments through whitespaces, here an example: http://SERVER/APPLICATIONFOLDER/
reportserver/scriptAccess?id=XX&args=firstArg%20secondArg

The return value of the script will be passed on to the browser as a text message. In addition, you
have the option to directly impact the output with the substitutions httpRequest and httpResponse.
This objects hide the Java objects HttpServletRequest (http://docs.oracle.com/javaee/6/api/
javax/servlet/http/HttpServletRequest.html) and HttpServletResponse (http://docs.
oracle.com/javaee/6/api/javax/servlet/http/HttpServletResponse.html). If the script
has no value returned (zero), it is assumed that it files its output independently in the OutputStream.
For further information refer to the Scripting guide.

157

http://SERVER/APPLICATIONFOLDER/reportserver/scriptAccess?id=XX
http://SERVER/APPLICATIONFOLDER/reportserver/scriptAccess?id=XX&args=firstArg%20secondArg
http://SERVER/APPLICATIONFOLDER/reportserver/scriptAccess?id=XX&args=firstArg%20secondArg
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletResponse.html
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletResponse.html

14. ReportServer Scripting

httpResponse.getWriter().write("Hello world")
return null

Remark. If a script is in a folder that is marked as web accessible (see Chapter 6) then the
script can be accessed also by users that are not logged in. This can, for example be used to
create a custom login page where the script is used to authenticate the user.

For further information on ReportServer scripts please refer to the ReportServer scripting guide.

158

Chapter 15

Integrating ReportServer with an Active
Directory using LDAP

In the following we will outline the necessary steps to connect ReportServer to an Active Directory
using LDAP. As there are many valid ways to organize a company’s directory (may it be AD or
another vendors product) ReportServer allows you to customize all relevant LDAP options. This
on one hand means, that the configuration might seem rather complex, but on the other hand it
provides you with a maximum of flexibility.

To connect ReportServer to the Active Directory Service we will use ReportServer’s integrated
configuration. The whole process can be divided into two, mostly separate parts. One part is the
synchronization of the user objects: we will automatically copy Users, Organizational Units and
Groups from the directory to ReportServer and keep them updated. The second part is a mechanism
that authenticates the previously imported users when they log into ReportServer.

15.1 Synchronizing Users

The current ldapimport.groovy script is available here: https://github.com/infofabrik/
reportserver-samples/blob/main/src/net/datenwerke/rs/samples/admin/ldap/ldapimport.
groovy.

The script reads its configuration from the sso/ldap.cf configuration file. As you may want to
schedule the LDAP-import process, e.g. to import LDAP users every night, you can use the above
script for this purpose. Otherwise, you can also use the ldapimport terminal command together
with the sso/ldap.cf configuration file for manually importing LDAP users. With other words:
for manually importing users use the ldapimport terminal command. For all other purposes use the
ldapimport.groovy script above. Both basically achieve the same, but the script is scheduleable:

For scheduling this functionality periodically, schedule the ldapimport.groovy script via the
scheduleScript terminal command as described in Section 17.52.

161

https://github.com/infofabrik/reportserver-samples/blob/main/src/net/datenwerke/rs/samples/admin/ldap/ldapimport.groovy
https://github.com/infofabrik/reportserver-samples/blob/main/src/net/datenwerke/rs/samples/admin/ldap/ldapimport.groovy
https://github.com/infofabrik/reportserver-samples/blob/main/src/net/datenwerke/rs/samples/admin/ldap/ldapimport.groovy

15. Integrating ReportServer with an Active Directory using LDAP

Note that you can (and should) use the ldaptest terminal commands for checking your LDAP
configuration before letting the real import to happen. Details and example uses can be found
in Section 17.36. The ldapschema (Section 17.35), ldapguid (Section 17.32), ldapfilter
(Section 17.36) and ldapinfo (Section 17.34) terminal commands may also be useful for
exploring your LDAP server and also the extended the ldaptest users, ldaptest groups
and ldaptest organizationalUnits with a -s (schema) flag (refer to 17.36 ldaptest)

While the -s flag allows you to explore the installed object class types of your users’, OUs’ and
groups’ object classes, the ldapschema allows you to explore any object class.

For example, you may execute ldaptest users -s for printing the schema of the users’ object
class. You should get a list of optional attributes, required attributes, and the parent object
class. Suppose the parent’s object class is “organizationalPerson”. You may then explore this
object class with ldapschema objectClassInfo organizationalPerson.

You may continue exploring the LDAP schemas until the top-most object class: “top”.

Refer to the Configuration Guide for a detailed description of all configurable values of the ldap.cf
configuration file: https://reportserver.net/en/guides/config/chapters/SSO-related-properties/
#LDAP

15.2 Authenticating Users

As of ReportServer 4.3.0, LDAP authentication is supported out-of-the-box. For using it, you
have to install the net.datenwerke.rs.ldap.service.ldap.pam.LdapPAM or net.datenwerke.
rs.ldap.service.ldap.pam.LdapPAMAuthoritative PAM in your reportserver.properties
configuration file as described here: https://reportserver.net/en/guides/config/chapters/
configfile-reportserverproperties/

It reads your ldap.cf configuration file together with metadata of your previously imported users,
and authenticates the given user against your LDAP server.

Now that you should have a basic understanding how the LDAP mechanism works, let’s give it a
try. Download the two files ldapimport.groovy and sso/ldap.cf to your computer.

Open the sso/ldap.cf with a text editor and change the configuration options to match your
configuration. Details on these can be found in the Configuration Guide: https://reportserver.
net/en/guides/config/chapters/SSO-related-properties/#LDAP

After you modified the file, open ReportServer in your browser and go to the fileserver section in
the admin module.

Upload the ldapimport.groovy to a location below the bin directory. Open the terminal by pressing
CTRL+ALT+T. Upload the sso/ldap.cf to the /etc directory and type the config reload terminal
command in order to reload your configuration.

As noted above, it is important to test your LDAP configuration first, so try to execute the

162

https://reportserver.net/en/guides/config/chapters/SSO-related-properties/#LDAP
https://reportserver.net/en/guides/config/chapters/SSO-related-properties/#LDAP
net.datenwerke.rs.ldap.service.ldap.pam.LdapPAM
net.datenwerke.rs.ldap.service.ldap.pam.LdapPAMAuthoritative
net.datenwerke.rs.ldap.service.ldap.pam.LdapPAMAuthoritative
https://reportserver.net/en/guides/config/chapters/configfile-reportserverproperties/
https://reportserver.net/en/guides/config/chapters/configfile-reportserverproperties/
https://reportserver.net/en/guides/config/chapters/SSO-related-properties/#LDAP
https://reportserver.net/en/guides/config/chapters/SSO-related-properties/#LDAP

15.2. Authenticating Users

following commands in order, as they are based on previous configuration. For example, the
ldaptest users assumes the filter is correct, so you should run ldaptest filter first.

ldaptest filter
ldaptest guid
ldaptest groups
ldaptest organizationalUnits
ldaptest users
ldaptest orphans

Check the output of the above commands. If you get the correct output for all test commands,
congratulations, your LDAP is configured correctly and you are ready to proceed. If you have any
error in the commands above, you have to check and correct your configuration in the ldap.cf
configuration file. Don’t forget to run config reload after each configuration change.

Now you are ready to import your users from your LDAP server.

For this purpose, change your current directory to the location where you put the script file using
the cd command and execute the import script.

cd /fileserver/bin
exec -c ldapimport.groovy

The -c (commit) flag is important because otherwise changes to the data model made by the script
would be reverted after execution.

If you now change over to the user manager section you can view the results of the import. Also
some statistics were written to the server’s logfile/console.

Now you have to give “ReportServer access” generic permission to your imported users in order for
them to be able to log-in. This of course depends on your desired configuration, but the easiest
way would be to give the required permission to the parent directory where your LDAP users reside.
Details can be found here in Section 3.2.

After you have verified that the import was successful, and you set the required permissions, it’s time
to load the authenticator module. Edit your reportserver.properties and set your LdapPAM
as shown below:

rs.authenticator.pams = net.datenwerke.rs.ldap.service.ldap.pam. ⤦
 Ç LdapPAMAuthoritative

Restart your ReportServer after saving your reportserver.properties configuration.

Now you should be able to log in with your LDAP users.

Note you can also use the legacy LdapPAM script available here: https:
//github.com/infofabrik/reportserver-samples/blob/main/src/net/datenwerke/
rs/samples/admin/ldap/hookldappam.groovy

163

https://github.com/infofabrik/reportserver-samples/blob/main/src/net/datenwerke/rs/samples/admin/ldap/hookldappam.groovy
https://github.com/infofabrik/reportserver-samples/blob/main/src/net/datenwerke/rs/samples/admin/ldap/hookldappam.groovy
https://github.com/infofabrik/reportserver-samples/blob/main/src/net/datenwerke/rs/samples/admin/ldap/hookldappam.groovy

15. Integrating ReportServer with an Active Directory using LDAP

15.3 Possible Improvements

Using the scheduler to refresh users periodically To keep ReportServer’s user database in sync
with your company directory you would probably like to run the ldapimport.groovy script
automatically from time to time. To do this, you can use the scheduleScript terminal
command.

164

Chapter 16

Terminal Operators

In the following we describe all terminal operators currently supported.

16.1 Write-into-file operators

Analogously as in Linux/Unix, the > operator allows you to send the command results to a given file
in the ReportServer virtual filesystem. The >> operator allows you to append the command results
into a given file.

For example, the following would write the output of the “columnsMetadata id:DatasourceDefinition ⤦
 Ç :8005 T_AGG_CUSTOMER” command into the “/fileserver/results.txt” file.

columnsMetadata id:DatasourceDefinition:8005 T_AGG_CUSTOMER > /fileserver/results. ⤦
 Ç txt

The following would append the output of the “columnsMetadata id:DatasourceDefinition ⤦
 Ç :8005 T_AGG_CUSTOMER” command into the “/fileserver/results.txt” file.

columnsMetadata id:DatasourceDefinition:8005 T_AGG_CUSTOMER >> /fileserver/results ⤦
 Ç .txt

16.2 Write-into-datasink operator

Analogously as the write-into-file operators, the >>> operator allow you to send the command
results to a given datasink. The datasink can be fetched using object resolver queries. Refer to
Section 13.5 Object Resolver for more details of object resolver queries.

For example, the following would write the output of the “columnsMetadata id:DatasourceDefinition ⤦
 Ç :8005 T_AGG_CUSTOMER” command into the datasink with id 123. Depending on the datasink
type, the results will be send per Email, OneDrive - SharePoint (O365), Dropbox, etc.

columnsMetadata id:DatasourceDefinition:8005 T_AGG_CUSTOMER >>> id: ⤦
 Ç DatasinkDefinition:123

Use: command >>> datasink

167

Chapter 17

Terminal Commands

In the following we will describe all terminal commands currently supported.

17.1 birt

Allows to control the BIRT engine. For the execution of reports, BIRT requires a running Eclipse
environment. It will start when the BIRT report will be executed for the first time and then continues
to run. By entering the "birt" command, the runtime environment for BIRT reports will stop.

Use: birt shutdown

17.2 cat

Allows to display the specified file on the terminal window.

Use: cat file

17.3 cd

Allows to change the current directory.

Use: cd directory

17.4 clearInternalDbCache

Clears the cache of the internal database. This is used to optimise the performance for CSV and
script datasources (refer to „datasources”).

Use: clearInternalDbCache

17.5 clearInternalScriptCache

Clears the cache of the internal scripting cache, e.g. compiled scripts.

169

17. Terminal Commands

Use: clearInternalScriptCache

17.6 columnsExist

Checks if a given column list exists in a given table.

Here, datasource is an object resolver query that returns exactly one datasource. Refer to
Section 13.5 Object Resolver for more information on object resolver queries.

The following example checks if the “CUS_CITY” column exists in the “T_AGG_CUSTOMER”
table of the datasource with id 123.

columnsExist id:DatasourceDefinition:123 T_AGG_CUSTOMER CUS_CITY

The following example checks if the “CUS_CITY” and “myColumn” columns exists in the “T_AGG_CUSTOMER”
table of the datasource with id 123.

columnsExist id:DatasourceDefinition:123 T_AGG_CUSTOMER CUS_CITY myColumn

Use: columnsExist datasource table columns

17.7 columnsMetadata

Allows to fetch column metadata of a given table.

Here, datasource is an object resolver query that returns exactly one datasource. Refer to
Section 13.5 Object Resolver for more information on object resolver queries.

The following example prints the metadata of the “T_AGG_CUSTOMER” table in the Datasource
with id 123:

columnsMetadata id:DatasourceDefinition:123 T_AGG_CUSTOMER

The default metadata printed is the following:

• COLUMN_NAME

• TYPE_NAME

• COLUMN_SIZE

• DECIMAL_DIGITS

• ORDINAL_POSITION

• IS_NULLABLE

• IS_AUTOINCREMENT

170

17.8. config

Metadata documentation of the columns above can be found here: https://docs.oracle.com/en/
java/javase/11/docs/api/java.sql/java/sql/DatabaseMetaData.html#getColumns(java.
lang.String,java.lang.String,java.lang.String,java.lang.String).

You may append, additionally to the default columns listed above, any number of the available
metadata columns by passing them as arguments. E.g. you may choose to append TABLE_SCHEM
and CHAR_OCTET_LENGTH as such:

Note that you can use the >>> operator for sending the command results to a given datasink.
This may be useful for long command outputs for better result analysis. You can also use >
for new file creation or >> for file append. Details of all terminal operators can be found in
Chapter 16 Terminal Operators.

columnsMetadata id:DatasourceDefinition:123 T_AGG_CUSTOMER TABLE_SCHEM CHAR_OCTET_LENGTH ⤦
 Ç

Use: columnsMetadata datasource table [column] [column...]

17.8 config

Configuration files are cached in order to optimize the performance. When a configuration file is
changed, the cache must be emptied for loading the changes into the cache and thus activating the
changes made.

Use: config reload

In order to read the current active value of a configuration parameter, you can use "config echo",
e.g. for reading the default charset in the main.cf configuration file:

config echo main/main.cf default.charset

would return you e.g. "UTF-8".

For reading an attribute in the form:

<mailaction html="false">

you can write: config echo scheduler/scheduler.cf scheduler.mailaction[@html].

More details on the syntax can be found in the Apache Commons Configuration documentation:
https://commons.apache.org/proper/commons-configuration/userguide/quick_start.html

17.9 connPoolStats

Prints connection pool statistics. For details on all parameters and configuration check https:
//www.mchange.com/projects/c3p0/ and the Connection Pool’s Section on the Configuration
Guide.

171

https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/DatabaseMetaData.html#getColumns(java.lang.String,java.lang.String,java.lang.String,java.lang.String)
https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/DatabaseMetaData.html#getColumns(java.lang.String,java.lang.String,java.lang.String,java.lang.String)
https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/DatabaseMetaData.html#getColumns(java.lang.String,java.lang.String,java.lang.String,java.lang.String)
https://commons.apache.org/proper/commons-configuration/userguide/quick_start.html
https://www.mchange.com/projects/c3p0/
https://www.mchange.com/projects/c3p0/

17. Terminal Commands

This command prints the following information:

Datasource Datasource name and id.

Max pool size Maximum number of connections a pool will maintain at any
given time.

Number of connections Current total number of connections in the pool (both busy and
idle).

Busy connections Number of busy connections in the pool. These connections are
already checked out from the pool.

Idle connections Idle of busy connections in the pool. These connections can be
checked out from the pool in order to be used.

Threads awaiting connection checkout Number of threads currently waiting for a connection from the
connection pool.

Unclosed orphaned connections Number of checked out connections from the pool but not longer
being managed by the connection pool.

In order to monitor the connection pool usage, two important parameters are “numBusyConnec-
tions” and “numThreadsAwaitingCheckoutDefaultUser”. If the “numBusyConnections” reaches the
“maxPoolSize”, this means that all the connections in the connection pool have exhausted and you
will see “numThreadsAwaitingCheckoutDefaultUser” increasing. This means that the number of
connections in the connection pool is not enough for the current load.

17.10 copyTableContents

Copies the contents of a given table to another table, which may reside in another database type,
so allows you to copy table contents database-independently. E.g. you may copy the contents of a
table from a MSSQL database to a table in an Oracle database. All datasource types supported by
ReportServer are supported.

The destination table must exist and must contain the same fields as the source table. Their field
types must be compatible.

You can locate your datasources by using an object resolver query. Refer to Section 13.5 Object
Resolver for more details of object resolver queries.

Refer to the following example:

copyTableContents id:DatabaseDatasource:58 RS_SCHEMAINFO id:DatabaseDatasource:60 ⤦
 Ç myschemainfo entity_id false 200

The example copies the contents of the RS_SCHEMAINFO table of your internal datasource with
id 58 into a table with name “myschemainfo” in the datasource with id 60.

Again, note this is database-independent. In the example above the datasource with id 58 is a
MSSQL datasource, while the datasource with id 60 is an Oracle datasource.

The command prints some information for you to be able to see what is happening in the background.

172

17.11. cp

In the example above the information printed is:

Status OK

All columns [ENTITY_ID, KEY_FIELD, VALUE]

Datatypes [-5, 12, 12]

Indexes of primary keys [0]

SELECT statement SELECT ENTITY_ID,KEY_FIELD,VALUE FROM RS_SCHEMAINFO

INSERT statement INSERT INTO myschemainfo (KEY_FIELD,VALUE) values (?,?)

Total duration 0.987 seconds

If your table contains a compound primary key, you can enter it in a ;-separated list. E.g.:

copyTableContents id:DatabaseDatasource:58 RS_SCHEMAINFO id:DatabaseDatasource:60 ⤦
 Ç myschemainfo myKey1;myKey2 false 200

As both source and destination tables should contain the same fields, the “primaryKeys” should exist
in both.

The “copyPrimaryKeys” should be true if primary key values should be copied to the destination
table, else false. For primary key fields in the destination table which are calculated by your database
(auto-increment, etc), this should be false in order for the database to calculate them instead of
the command copying them.

The batch size is the packet size in the batch-insert. This is optional. Default is 100.

Use: copyTableContents sourceDatasource sourceTable destinationDatasource destinationTable ⤦
 Ç primaryKeys copyPrimaryKeys [batchSize]

17.11 cp

Enables to copy one or more files to a new folder. The "-r" flag marks the process as being
recursively. In this case sub-folders will also be copied.

Use: cp [-r] sourcefiles targetfolder

Note that report variants can also be copied into another report. By using wildcards (e. g. prefix*)
you can copy several objects.

17.12 createTextFile

Creates a new text file in the fileserver file system and opens a window for editing the new file.

Use: createTextFile file

173

17. Terminal Commands

17.13 datasourceMetadata

Allows to dynamically call any method from the DatabaseMetaData interface found here: https://
docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/DatabaseMetaData.html.

The call fails if argument count and name does not match exactly one method of said interface.
The call fails as well if the args cannot be converted into the needed parameter types. null may be
passed as a String in the args if necessary: it will be evaluated to a null object. As you will see it
is a very powerful and versatile tool at your disposal.

All results will be displayed as a table if their return type is a ResultSet.

Examples:

datasourceMetadata id:DatasourceDefinition:123 getDriverMajorVersion

datasourceMetadata id:DatasourceDefinition:123 getDriverName

datasourceMetadata id:DatasourceDefinition:123 getDatabaseMajorVersion

datasourceMetadata id:DatasourceDefinition:123 getColumns null null T_AGG_CUSTOMER ⤦
 Ç null

In the last example we call the following method https://docs.oracle.com/en/java/javase/11/
docs/api/java.sql/java/sql/DatabaseMetaData.html#getColumns(java.lang.String,java.
lang.String,java.lang.String,java.lang.String) and choose to supply the table name to
identify which column’s metadata will be fetched.

So we pass the method name: getColumns and four parameters: null null T_AGG_CUSTOMER
null. As mentioned above, null evaluates to the null object which means we call the method
getColumns(null, null, “T_AGG_CUSTOMER”, null).

Note that you can use the >>> operator for sending the command results to a given datasink.
This may be useful for long command outputs for better result analysis. You can also use >
for new file creation or >> for file append. Details of all terminal operators can be found in
Chapter 16 Terminal Operators.

Use: datasourceMetadata datasource methodName [arg] [arg ...]

17.14 deployReport

Allows to analyze a deployment attempt of a given report (left report) into an destination report
(right report). Both reports have to exist already in ReportServer.

analyze Create and download a document containing deployment analysis. This analysis lists conflicts
(including context) that would occur during a deployment attempt of the left report into the
right report.

174

https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/DatabaseMetaData.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/DatabaseMetaData.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/DatabaseMetaData.html#getColumns(java.lang.String,java.lang.String,java.lang.String,java.lang.String)
https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/DatabaseMetaData.html#getColumns(java.lang.String,java.lang.String,java.lang.String,java.lang.String)
https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/DatabaseMetaData.html#getColumns(java.lang.String,java.lang.String,java.lang.String,java.lang.String)

17.15. desc

Note that if an entry does not cause a conflict, e.g. if the corresponding column is not used in any
variant, the entry is not listed in the analysis result.

The -i option can be used to ignore case-sensitivity of field names.

In order to select the reports, you can use object resolver queries. Refer to Section 13.5 Object
Resolver for more details on this. Note that the queries must resolve to exactly one basic report.

Example:

deployReport analyze id:Report:123 id:Report:456

A PDF containing the analysis of deploying Report with id 123 (left report) into Report with id 456
(right report) is created and downloaded automatically.

The current sections in the analysis are:

• Columns contained in left report but not in right report

• Columns contained in both reports but which different definitions

• Variants of right report using columns not available in left report

• Variants of right report using columns with different definitions as in left report

Use: analyze [-i] leftReport rightReport

17.15 desc

Allows the output of object definitions as they are internally used by ReportServer. For instance,
by using desc Report you will get a list of all fields which will be saved for the report object
of ReportServer. The desc function is primarily designed for developers who want to enhance
ReportServer via scripts. For further information refer to the Script/Developer manual. In addition,
you can display the object data saved. You wish to display the fields saved in the database for a
Jasper Report, then enter the command desc JasperReport myReport. Here myReport stands for
the name of your report. By setting the -w flag you control the output either directly in the console
or in a new window.

Tip: The command ls -l displays the entity name of an object.

Use: desc [-w] EntityName [Entity]

17.16 diffconfigfiles

Default configuration files are created on first run of ReportServer. Later, when upgrading
ReportServer to a newer version, it is probable that newly added configuration files will be missing
(i.e. all configuration files added between the version originally installed and the version upgraded

175

17. Terminal Commands

to). This command helps you to find out which configuration files are missing without having to
search all release notes between these versions. Default config files can also be created with help of
this command.

showmissing allows you to compare the current set of configuration files with the expected set of
configuration files of the currently installed version. Then it lists all missing files.

createmissing allows you to create the default missing configuration files found with “showmissing” into
the appropriate location inside your /fileserver/etc path.

createall copies all default missing configuration files into a given folder. This allows you to compare
configuration file contents/fields, etc.

Use: diffconfigfiles (showmissing | createmissing | createall folder)

17.17 dirmod

Enables to modify fileserver directories. The following subcommand is available:

webaccess Modify the web access property of a given fileserver directory.

The syntax for modifying a directory’s web access is:

dirmod webaccess directory access

Here, directory is an object resolver query that returns one or more FileServerFolders. Refer to
Section 13.5 Object Resolver for more information on object resolver queries. access may be true
or false.

Usage examples:

Removes web access from fileserver/resources/ directory:

dirmod webaccess fileserver/resources/ false

Removes web access from directory with id 123:

dirmod webaccess id:FileServerFolder:123 false

Adds web access to all filesystem directories containing “report” in their name:

dirmod webaccess "hql:from FileServerFolder where name like '%report%'" true

17.18 echo

Outputs the given text on the console.

Use: echo hello world

176

17.19. editTextFile

17.19 editTextFile

Opens an existing text file in the fileserver file system for editing.

Use: editTextFile file

17.20 eliza

You want to communicate with Eliza? Enter eliza and then hello. You will terminate the
communication by entering CTRL+C or bye.

Use: eliza

17.21 env

Prints environment information of the current installation including relevant environment variables.

Use: env

17.22 exec

Allows to execute scripts from the fileserver’s file system.

By entering the -c flag (for commit) you control whether changes to the script persist in the
database.

With the -d (for silence) you can suppress all the script’s output.

The -t flag allows you to output the complete stacktrace in case of an exception.

By entering the -n (for non-monitored mode) flag you prevent the script to run in an own monitored
thread. With other words, it runs the script in the server thread instead of in its own thread.

Finally, the -w flag displays the script output in a new window.

For further information on scripts refer to the Script Guide.

Use: exec [-c] [-s] [-t] [-n] [-w] script

17.23 export all

Allows to export all metadata to a file. This file can be then imported by the command "import
all". Usually you should directly zip and save the export data in the File System to save memory, as
it will be filed in an XML dialect.

For exporting and zipping the export file, use export all | zip > myExportFile.zip. You will get
a zipped “data” file, which can be renamed to “data.xml” before importing again.

177

17. Terminal Commands

If you don’t need to zip the file, you can use export all > myExportFile.xml.

Note that the export file has to be created inside the internal file system: cd fileserver and the
“import all” command needs an unzipped XML file.

Use: export all > myExportFile.xml

17.24 groupmod

Enables to change groups. The following subcommands are available:

addmembers Add or remove members to a group. These can be users, OUs, or another groups.

The syntax for adding/removing members to/from a group is

groupmod addmembers [-c] group [members] [members...]

Here, group is an object resolver query that returns exactly one group. Refer to Section 13.5 Object
Resolver for more information on object resolver queries. If the optional parameter -c is given, the
given members are removed instead of added. If no members are given, all members are being
deleted from the group member list. Finally, the members list parameters refer to one or more
object resolver queries that return a user, a group, or an OU. Usage examples:

Deletes all members from the group with id 123:

groupmod addmembers -c id:Group:123

Deletes one user from the group with id 123:

groupmod addmembers -c id:Group:123 id:User:456

Adds three members (one user, one group, one OU) to the group with id 123:

groupmod addmembers id:Group:123 id:User:456 "hql:from Group where id=789" id:OrganisationalUnit ⤦
 Ç :987

17.25 haspermission

Allows to check if a given user has a given permission on a given target. Returns true if the user
has the permission, else false.

The -g flag allows to check generic permissions. Documentation of these including the exact target
types you can enter can be found in Section 3.2 Permission Management.

For other objects, e.g. Users, Datasources, etc., you can check the entity types here: https:
//reportserver.net/api/latest/entities.html.

All objects can be fetched using object resolver queries. Refer to Section 13.5 Object Resolver for

178

https://reportserver.net/api/latest/entities.html
https://reportserver.net/api/latest/entities.html

17.26. hello

more details of object resolver queries.

Valid permissions are:

• Read

• Write

• Execute

• Delete

• GrantAccess

• TeamSpaceAdministrator

The following example checks if the user with id 123 has Execute permission on the AccessRsSecurityTarget
generic target, i.e. if the user is allowed to log in into ReportServer.

reportserver$ haspermission -g id:User:123 net.datenwerke.rs.core.service. ⤦
 Ç genrights.access.AccessRsSecurityTarget Execute

reportserver$ true

The following example checks if the user with id 123 has Read permission on the datasource with
id 456.

reportserver$ haspermission id:User:123 id:DatasourceDefinition:456 Read
reportserver$ false

Use: haspermission [-g] user target right

17.26 hello

Say hello

Use: hello

17.27 id

Allows to print information for a given username.

This includes group information and organizational unit information of a user.

Group information includes direct and indirect groups (via another groups or via organizational
units).

Use: id username

17.28 info

Displays information about ReportServer objects. The following subcommands are available:

179

17. Terminal Commands

info datasource

Displays general information of a given datasource. For relational databases, displays additional
metadata information.

You can use an object resolver query to locate the specific datasource. Refer to Section 13.5 Object
Resolver for more details of object resolver queries.

Example for displaying information of the datasource with id 123:

info datasource id:DatasourceDefinition:123

Use: info datasource datasource

17.29 import all

Allows to import an export file which was created with "export all".

Use: import all export.xml

17.30 kill

Allows to terminate ongoing script executions. Refer also to ps. By entering the -f flag you
can terminate the script execution thread. Keep in mind that this will be effected by Thread.
stop which might provoke errors in ReportServer. For a discussion of the use of Thread.stop()
please refer to http://docs.oracle.com/javase/6/docs/technotes/guides/concurrency/
threadPrimitiveDeprecation.html.

Use: kill [-f] id

17.31 ldapfilter

Allows you to analyze the installed LDAP filter in the sso/ldap.cf configuration file. The LDAP
filter is parsed and shown it in a multi-line form that makes it easier to understand its hierarchy and
embedded components. The command also tries to simplify the LDAP filter in certain ways (for
example, by removing unnecessary levels of hierarchy, like an AND embedded in another AND).

The optional i (indentation) flag is used to indicate the number of spaces for indentation. Default
is 2. The optional n (no-simplification) flag indicates that no simplification should be done, i.e.,
the filter should not be futher analyzed. Note that you have to reload your configuration changes
with config reload or restart your ReportServer when you change your filter in the sso/ldap.cf
configuration file.

As the output of this terminal command is usually long, you can use the >>> operator for sending
the output to a given datasink: ldapfilter >>> id:DatasinkDefinition:123.

Use: ldapfilter [-i] [-n]

180

http://docs.oracle.com/javase/6/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
http://docs.oracle.com/javase/6/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html

17.32. ldapguid

17.32 ldapguid

Makes a best-effort guess of the appropriate GUID needed for your specific LDAP server. The
GUID is needed in the in the LDAP configuration file: sso/ldap.cf.

Use: ldapguid

17.33 ldapimport

Imports LDAP users, groups and organizational units as configured in sso/ldap.cf. Configuration
options are described in the Configuration Guide.

For scheduling the functionality periodically, you can use the script available here: https://github.
com/infofabrik/reportserver-samples/blob/main/src/net/datenwerke/rs/samples/admin/
ldap/ldapimport.groovy and schedule it via “scheduleScript”.

Use: ldapimport

17.34 ldapinfo

Displays some information about your installed LDAP server in the LDAP configuration file:
sso/ldap.cf.

Use: ldapinfo

17.35 ldapschema

The superordinate ldapschema command includes the following commands which allow you to
browse and analyze your LDAP schema. This may be useful for finding out the values needed in the
LDAP configuration file: sso/ldap.cf.

Note that you can use the >>> operator for sending the command results to a given datasink.
This may be useful for long command outputs for better result analysis. You can also use >
for new file creation or >> for file append. Details of all terminal operators can be found in
Chapter 16 Terminal Operators.

For example, in order to send a list of all your LDAP attributes to a datasink with ID 123, you can
enter the following command: ldapschema attributeList >>> id:DatasinkDefinition ⤦
 Ç :123

ldapschema attributeInfo

Displays schema information of a given attribute. This information includes the attribute’s OID, all
its names, description, superior and sub-attributes, syntax, matching rules, usage, among others.
You can use the ldapschema attributeList for listing all available attributes, which you can
further analyze with ldapschema attributeInfo.

181

https://github.com/infofabrik/reportserver-samples/blob/main/src/net/datenwerke/rs/samples/admin/ldap/ldapimport.groovy
https://github.com/infofabrik/reportserver-samples/blob/main/src/net/datenwerke/rs/samples/admin/ldap/ldapimport.groovy
https://github.com/infofabrik/reportserver-samples/blob/main/src/net/datenwerke/rs/samples/admin/ldap/ldapimport.groovy

17. Terminal Commands

Use: ldapschema attributeInfo attribute

ldapschema attributeList

Displays a list of all attributes found in your LDAP server.

Use: ldapschema attributeList

ldapschema entry

Displays a text representation of the complete LDAP schema entry. As this output is usually a long
output, you can use the >>> operator for sending the output to a given datasink as noted above:
ldapschema entry >>> id:DatasinkDefinition:123.

Use: ldapschema entry

ldapschema matchingRuleInfo

Displays schema information of a given matching rule. This information includes the match-
ing rule’s OID, all its names, description, usage, among others. You can use the ldapschema
matchingRuleList for listing all available matching rules, which you can further analyze with
ldapschema matchingRuleInfo.

Use: ldapschema matchingRuleInfo matchingRule

ldapschema matchingRuleList

Displays a list of all matching rules found in your LDAP server.

Use: ldapschema matchingRuleList

ldapschema objectClassInfo

Displays schema information of a given object class. This information includes the object class OID,
all its names, description, super and sub-classes, required and optional attributes, among others.
You can use the ldapschema objectClassList for listing all available object classes, which you
can further analyze with ldapschema objectClassInfo.

Use: ldapschema objectClassInfo objectClass

ldapschema objectClassInfo

Displays a list of all object classes found in your LDAP server.

Use: ldapschema objectClassList

ldapschema syntaxRuleInfo

Displays schema information of a given syntax rule. This information includes the syntax rule’s
OID, description, usage, among others. Note that different as the rest of the ldapschema

182

17.36. ldaptest

subcommands, the OID is required for the syntaxRuleInfo subcommand. You can use the
ldapschema syntaxRuleList for listing all available syntax rules together with their OIDs.

Use: ldapschema syntaxRuleInfo syntaxRule

ldapschema syntaxRuleList

Displays a list of all syntax rules found in your LDAP server.

Use: ldapschema syntaxRuleList

17.36 ldaptest

Tests LDAP filter, GUID, users, groups and organizational units as configured in sso/ldap.cf.
Configuration options are described in the Configuration Guide.

Note that you can use the >>> operator for sending the command results to a given datasink.
This may be useful for long command outputs for better result analysis. You can also use >
for new file creation or >> for file append. Details of all terminal operators can be found in
Chapter 16 Terminal Operators.

When troubleshooting your LDAP configuration, you should run the commands shown next in
the order shown below, as some of them are based on correct configuration. E.g. ldaptest
users needs a correct filter installed, so ldaptest filter should be checked first.

ldaptest filter
ldaptest guid
ldaptest groups
ldaptest organizationalUnits
ldaptest users
ldaptest orphans

ldaptest filter

Allows you to test the installed filter and prints the results.

If the -a flag is entered, requests and displays additional LDAP attributes. These must be separated
by semicolon (;).

E.g., in order to display the mail, member and ou attribute values of each entry, you can enter the
following:

ldaptest filter -a mail;member;ou

Use: ldaptest filter [-a]

183

17. Terminal Commands

ldaptest guid

Allows you to test the installed GUID and prints the results.

Use: ldaptest guid

ldaptest groups

Allows you to show the LDAP groups together with their attributes (in the sso/ldap.cf configuration
file) that would be imported in an ldapimport execution.

If the -s (schema) flag is entered, the schema of the groups’ object class is shown. This may be
useful for finding out other group properties that can be entered into the ldap.cf configuration
file. You can also use the ldapschema command for further exploring your object class attributes
(refer to 17.35 ldapschema).

If the -a flag is entered, requests and displays additional LDAP attributes. These must be separated
by semicolon (;).

E.g., in order to display the instanceType and groupType attribute values of each group, you can
enter the following:

ldaptest groups -a instanceType;groupType

Use: ldaptest groups [-s] [-a]

ldaptest organizationalUnits

Allows you to show the LDAP organizational units together with their attributes (in the sso/ldap.cf
configuration file) that would be imported in an ldapimport execution.

If the -s (schema) flag is entered, the schema of the organizational units’ object class is shown.
This may be useful for finding out other organizational unit properties that can be entered into the
ldap.cf configuration file. You can also use the ldapschema command for further exploring your
object class attributes (refer to 17.35 ldapschema).

If the -a flag is entered, requests and displays additional LDAP attributes. These must be separated
by semicolon (;).

E.g., in order to display the distinguishedName and commonName attribute values of each group,
you can enter the following:

ldaptest groups -a distinguishedName;commonName

Use: ldaptest organizationalUnits [-s] [-a]

ldaptest users

Allows you to show the LDAP users together with their attributes (in the sso/ldap.cf configuration
file) that would be imported in an ldapimport execution.

184

17.37. listlogfiles

If the -s (schema) flag is entered, the schema of the users’ object class is shown. This may be
useful for finding out other user properties that can be entered into the ldap.cf configuration file.
You can also use the ldapschema command for further exploring your object class attributes (refer
to 17.35 ldapschema).

If the -a flag is entered, requests and displays additional LDAP attributes. These must be separated
by semicolon (;).

E.g., in order to display the memberOf and nickname attribute values of each user, you can enter
the following:

ldaptest user -a memberOf;nickname

Use: ldaptest users [-s] [-a]

ldaptest orphans

Your LDAP filter should return all (and only!) your users, groups and organizational units. If more
nodes are returned, or if the mappings in ldap.cf are not correct, nodes are returned that can
not be mapped to a user, a group or an organizational unit. These are called LDAP orphans. In
a correct installation and configuration, there should not be any LDAP orphans. Thus, you get
LDAP orphans when you return “to much” from your LDAP filter. You can easily list all LDAP
orphans with this terminal command.

If the -a flag is entered, requests and displays additional LDAP attributes. These must be separated
by semicolon (;).

Use: ldaptest orphans [-a]

17.37 listlogfiles

Displays a list of the log files in the catalina.home path. If you need to explicitly set the log file
path, you can use the logdir setting in the main.cf configuration file.

You can specify the sorting column(s) by a semicolon-separated list of column numbers in the -s
option. Allowed are values 1, 2, and 3 for the first (filename), second (last modified) and third
(size) columns, respectively. If you need to sort a given column in descending order, you can enter
a - prefix in front of the column’s index. Default sorting is by filename (ascending order).

Further, you can use Java regular expressions (https://docs.oracle.com/en/java/javase/11/
docs/api/java.base/java/util/regex/Pattern.html) for filtering files.

The example below lists all log files starting with “reportserver” and sorting them by size in descending
order.

listlogfiles -s -3 -f "reportserver.*"

The example below lists all log files starting with “reportserver” and sorting them by size in descending

185

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html

17. Terminal Commands

order, followed by filename in ascending order.

listlogfiles -s -3;1 -f "reportserver.*"

Further, you can use the -e option if you want to send the (filtered) log files via e-mail. For example,
the following allows you to ZIP and send all log files starting with “reportserver” to the current user
via e-mail.

listlogfiles -s -3;1 -f "reportserver.*" -e

If you need to send the (filtered) log files to any datasink, you can use the -d option for this. You
can use any object resolver query to locate the specific datasink. Refer to Section 13.5 Object
Resolver for more details of object resolver queries. For example, the following allows you to ZIP
and send all log files starting with “reportserver” to the datasink with id 123.

listlogfiles -s -3;1 -f "reportserver.*" -d id:DatasinkDefinition:123

Note that you can display the last n lines of a given log file with the viewlogfile command
described in Section 17.63 viewlogfile.

Use: listlogfiles [-s] [-f] [-e] [-d]

17.38 listpath

Enables the display of the object path. So “listpath .” returns the current path. By entering
the -i flag you control the output either by displaying the path using the object name, or by IDs.
ReportServer internally saves paths via object IDs, as they are unique in contrast to object names.

Use: listpath [-i] Object

17.39 locate

The locate command searches for objects matching a given expression / object resolver query. The
optional argument -t allows to filter the results to a given object type.

Note that, in order to find an object, your user has to have at least read permissions on that object
and module read permissions on the management module where this object resides. E.g.: to find a
specific report, the user has to have at least read permissions on the report and read permissions
on the report management module. Check Chapter 3 User and Permission Management for more
information on permissions.

Expressions can be an object id or object name / key. The object name / key may contain wildcards.

E.g.:

locate 123 Locates the object with id 123.

locate my*Report Locates all objects matching the “my*Report” expression. E.g. it
matches both “myJasperReport” and “myTableReport”.

locate -t TableReport my*Report Locates all objects matching the “my*Report” expression of type
“TableReport”. I.e. it filters the results to return only TableReports.

186

17.40. ls

You can further use an object resolver query to locate the specific entity or group of entities. Refer
to Section 13.5 Object Resolver for more details of object resolver queries. Note that when you use
an object resolver query, the -t option is ignored. Quotation marks are needed when the object
resolver query contains spaces. E.g.:

reportserver$ locate "hql:from TableReport where id=123"
Report Root/Dynamic Lists/myReport (Reportmanager)

Use: locate [-t] expression

17.40 ls

Displaying files in the respective folder By entering ls -l additional information per file will be
displayed.

Use: ls [-l] path

17.41 meminfo

Displays the storage utilization of ReportServer.

Used Memory your current memory usage

Free Memory the amount of free memory in the Java Virtual Machine

Total Memory the total amount of memory in the Java Virtual Machine. The value returned by this
method may vary over time, depending on the host environment.

Max Memory the maximum amount of memory that the Java virtual machine will attempt to use.

Use: meminfo

17.42 mkdir

Enables to create a new folder.

Use: mkdir folder name

17.43 mv

Enables to move files to a target folder. By using wildcards (e. g. prefix*) you can move several
objects.

Note that report variants can also be moved into another report.

Use: mv source file target folder

187

17. Terminal Commands

17.44 onedrive

Provides easy access to the Microsoft graph API. onedrive is a three-tiered command. Subcom-
mands loosely group subsubcommands depending on which kind of onedrive-object those commands
deal with. Subsubcommands can be of simple or more complex nature depending on their purpose.
All commands use a OneDrive - SharePoint (O365) datasink for configuration and require certain
permissions to use the graph API. Should permissions granted by the accesstoken of the onedrive
datasink be insufficient you can supply an optional accesstoken which will be used instead of the
default one.

Here, datasink is an an object resolver query that returns exactly one onedrive datasink object.
Refer to Section 13.5 Object Resolver for more information on object resolver queries.

group getmygroups fetches and displays all OneDrive groups you belong to. This requires the permission
Group.Read.All

group getdrivesof fetches and displays information of all available drive objects of a given group.
This requires the permission Sites.Read.All

Use: onedrive group getmygroups datasink [accesstoken]

Use: onedrive group getdrivesof groupid datasink [accesstoken]

17.45 pkg

Command to install ReportServer packages.

list Lists all available packages in the local filesystem.

install Install a package. Use flag -d to install package from local file system.

17.46 ps

Displays scripts which are currently running (and monitored). By entering the kill command you
can interrupt executions.

Use: ps

17.47 pwd

Displays the current path. By entering the -i flag, the path will be given in ID presentation.

Use: pwd [-i]

17.48 rcondition

rcondition determines dynamic lists as a basis for conditional scheduling (refer also to Chapter 11
Scheduling of Reports). The following sub-commands are available:

188

17.49. reportmod

create Creates a new condition.

The syntax for creating a new condition is

rcondition create conditionReport name [key] [description]

Here, conditionReport can be either the id or an object resolver query that returns exactly one
dynamic report variant. Refer to Section 13.5 Object Resolver for more information on object
resolver queries. Name and description identify the same, while key is unique to the condition.
Please observe to set enclosing quotation marks if spaces are included in object resolver queries,
names, keys and descriptions, e.g. “This is a description”.

list Displays a list of the reports marked as conditions.

remove Allows to remove a condition.

Use: rcondition remove condition

Here, condition can be either the id or an object resolver query of the condition to remove. E.g.:

rcondition remove id:Condition:123

17.49 reportmod

Enables to set and readout report properties (ReportProperty). They can, for instance, be used in
connection with scripts and enhancements to save data with the report. In addition, it enables to
set the unique report UUID.

17.50 rev

By entering the rev command you will have access to saved object versions.The list sub-command
lists all existing versions of an object. The restore command enables to restore a former version of
an object.

list Lists all revisions of an object.

restore Restores an old version of an object

Example:

rev list id:TableReport:123 Lists all revisions of an the dynamic list with
id 123.

rev restore id:TableReport:123 456 /reportmanager/test Restores the revision 456 from the dynamic
list 123 into /reportmanager/test

17.51 rm

Enables to delete files/objects. To recursively delete folders (which are not empty), the -r has to
be added.

189

17. Terminal Commands

Note that report variants can also be removed. By using wildcards (e. g. prefix*) you can remove
several objects.

Use: rm [-r] object

17.52 scheduleScript

Enables to execute timer controlled scripts. "scheduleScript list" delivers a list showing the currently
scheduled scripts. scheduleScript execute allows to enter further dispositions.

Note that the command scheduler list shows all scheduler jobs, and scheduler remove jobid
allows you to remove current jobs. Refer to the scheduler documentation in Section 17.53 for
more details on this command.

To schedule scripts use the following syntax:

scheduleScript execute script scriptArguments expression

Here, script is the object reference of a script. Expression determines the scheduling sequence.
Please find here some examples:
scheduleScript execute myScript.groovy " " today at 15:23
scheduleScript execute myScript.groovy " " every day at 15:23
scheduleScript execute myScript.groovy " " at 23.08.2012 15:23
scheduleScript execute myScript.groovy " " every workday at 15:23 starting on 15.03.2011

for 10 times
scheduleScript execute myScript.groovy " " every hour at 23 for 10 times
scheduleScript execute myScript.groovy " " today between 16:00 and 23:00 every 10 minutes
scheduleScript execute myScript.groovy " " every week on monday and wednesday at 23:12

starting on 27.09.2011 until 28.11.2012
scheduleScript execute myScript.groovy " " every month on day 2 at 12:12 starting on

27.09.2011 11:25 for 2 times

17.53 scheduler

The superordinate scheduler command includes the following commands to control the scheduler.

daemon Enables to start and stop the scheduler. disable will stop the scheduler and prevent it to
restart in case of a ReportServer restart. Commands prefixed by wd refer to Watchdog which is
integrated in the Scheduler. For further information on this refer to the Developer manual.

scheduler daemon [start, stop, restart, enable, disable, status, wdstatus, wdshutdown,
wdstart, wdrestart]

list Lists jobid, type and nextFireTime.

scheduler list

listFireTimes Lists the upcoming fire times for a given jobid for the next numberofFireTimes. If
numberofFireTimes is not specified default is 10.

scheduler listFireTimes jobid numberofFireTimes

remove Deletes a job with given jobid from the dispositions.

190

17.54. sql

scheduler remove jobid

unschedule Cancels a job with given jobid from the dispositions.

scheduler unschedule jobid

17.54 sql

The SQL command enables to directly access a relational database to run normal SQL commands
with the user filed in the object. By calling up bye you leave the console. A query always displays
100 result lines each. With ENTER you can browse through the results.

Here, datasource is an object resolver query that returns exactly one datasource of type DatabaseDatasource.
Refer to Section 13.5 Object Resolver for more information on object resolver queries.

Example
reportserver$ cd "/datasources/internal datasources/"
reportserver$ sql "ReportServer Data Source"
> SELECT COUNT(*) FROM RS_AUDIT_LOG_ENTRY
COUNT(*)
27783
> bye
Good Bye

Use: sql datasource

17.55 tableExists

Checks if a given table exists in a given datasource. Here, datasource is an object resolver query
that returns exactly one datasource. Refer to Section 13.5 Object Resolver for more information
on object resolver queries.

The following example checks if the “T_AGG_CUSTOMER” table exists in the datasource with id
123.

tableExists id:DatasourceDefinition:123 T_AGG_CUSTOMER

Use: tableExists datasource table

17.56 ssltest

Allows you to test your SSL configuration. For example, the following allows you to test a HTTPS
connection to www.google.com:

ssltest www.google.com 443

In case you installed a server’s certificate, for example for LDAPS or LDAP StartTLS, this command
is useful for testing the installed certificate analogously as shown below:

191

www.google.com

17. Terminal Commands

ssltest ipOrHostOfYourServer 10389

Use: ssltest host port

17.57 teamspacemod

Enables to change TeamSpaces. The following subcommands are available:

addmembers Add or removes members to or from a TeamSpace. These can be either users or groups.

The syntax for adding/removing members to/from a TeamSpace is

teamspacemod addmembers [-c] teamspace [members] [members...]

Here, teamspace is an object resolver query that returns exactly one TeamSpace. Refer to
Section 13.5 Object Resolver for more information on object resolver queries. If the optional
parameter -c is given, the given members are removed instead of added. If no members are given, all
members are being deleted from the TeamSpace member list. Finally, the members list parameters
refer to one or more object resolver queries that return a user or a group. All these users and
groups are being added to the given TeamSpace as guests. Usage examples:

Deletes all members from the TeamSpace with id 123:

teamspacemod addmembers -c id:TeamSpace:123

Deletes one member from the TeamSpace with id 123:

teamspacemod addmembers -c id:TeamSpace:123 id:User:456

Adds three members (two users and one group) to the TeamSpace with id 123:

teamspacemod addmembers id:TeamSpace:123 id:User:456 "hql:from Group where id=789" ⤦
 Ç "/usermanager/myOU/myUser"

setrole Change a users role in the TeamSpace

17.58 unzip

Enables to unpack files presented in ZIP format.

Use: unzip file

17.59 updateAlias

Reloads the alias configuration. Refer also to section „Terminal”.

Use: updateAlias

192

17.60. updatedb

17.60 updatedb

Updates the search index. This may take some minutes depending on the data volume.

Use: updatedb

17.61 usermod

Enables to set UserProperties. They can be used for enhancements. For further information refer
to the Script/Developer manual.

Use: usermod setproperty theProperty theValue theUser

17.62 variantTest

Allows to create a PDF document containing a test analysis of an execution of a given variant or a
given report. In case of errors, it shows the error details in the result.

For base reports, the report query is shown in the test results if the user has “Administration” and
“Report management” generic permissions.

For reports using database bundles, the command also allow to specify which datasources should
be tested. All datasources given in the command must be valid for the given report, i.e. it is not
allowed to test a variant with a datasource not used in the corresponding report.

In order to select the reports and the datasources, you can use object resolver queries. Refer to
Section 13.5 Object Resolver for more details on this. Note that the report queries must resolve to
exactly one Report entity and the datasource queries to one or more DatasourceDefinitions.

Examples:

variantTest id:Report:123

The report or variant with ID 123 is being tested.

variantTest id:DatasourceDefinition:456 id:DatasourceDefinition:789 id:Report:123

The report or variant with ID 123 is being tested with datasources 456 and 789. Both datasources
must be part of the datasource bundle the report uses.

variantTest "hql:from DatasourceDefinition where name='PROD'" id:Report:123

The report or variant with ID 123 is being tested with the datasource named PROD. This datasource
must be part of the datasource bundle the report uses.

Use: variantTest [datasource] [datasource...] report

17.63 viewlogfile

Displays the last n lines of a given log file in the catalina.home path. If you need to explicitly set
the log file path, you can use the logdir setting in the main.cf configuration file.

193

17. Terminal Commands

The example below shows the “reportserver.log” file.

viewlogfile reportserver.log

Note that you can list, filter and send via e-mail or any datasink the complete log files using the
listlogfiles command described in Section 17.37 listlogfiles.

Use: viewlogfile logFilename

17.64 xslt

Enables to perform an XSL transformation. Here, stylesheet input and output are FileServer files.

Example: xslt T_AGG_EMPLOYEE.xsl T_AGG_EMPLOYEE_input.html T_AGG_EMPLOYEE_result.xml ⤦
 Ç

You can find the result and the example files here: https://github.com/infofabrik/reportserver-samples/
tree/main/src/net/datenwerke/rs/samples/templates/xslt.

Use: xslt stylesheet input output

17.65 zip

Enables to compress and pack files into a zip archive. The input list is a space-separated list of files
or/and directories.

Example:

zip myfile.zip 1.groovy 2.groovy etc 3.groovy

Zips three files and one directory into myfile.zip.

Use: zip outputFile.zip inputList

194

https://github.com/infofabrik/reportserver-samples/tree/main/src/net/datenwerke/rs/samples/templates/xslt
https://github.com/infofabrik/reportserver-samples/tree/main/src/net/datenwerke/rs/samples/templates/xslt

Chapter 18

Dashboards and Dadgets

The Dashboard module is the first module users will see after signing in. Here, users can file simply
prepared data for quick access. For further information on the use of the Dashboard refer to the
ReportServer User manual.

Dashboards are privately owned. This means that users can configure their Dashboards themselves,
and other users cannot change (or view) them. As the administrator you can provide pre-defined
Dadgets and even complete Dashboards that users can easily import. To pre-configure a Dashboard
or Dadget, switch to the Administration section and then to Dashboard Library.

Like many other objects in ReportServer, Dashboards and Dadgets are managed hierarchically. This
enables to clearly manage even large object volumes and comfortably assign rights. Users must
have read access to Dadgets and Dashboards they want to import. The following objects can be
created in the Dashboard tree:

Folder Serves to structure Dashboards and Dadgets.

Dadget A pre-configured Dadget which users can import to proper Dashboards.

Dashboard A pre-configured Dashboard that users can import.

The settings of a Dadget are identical to its configuration when a user imports it to the Dashboard.
In a first step you have to configure the Dadget type. After having transferred the data, you can
set the specific properties of the Dadget. Please observe that Dadgets which have been integrated
by users cannot be changed, and the changes you made in the Administration section will be
immediately visible to the user.

For details about the individual Dadget types refer to the User manual. As the most frequent
case for Dadgets pre-defined by the administrator is certainly the configuration of complex HTML
Dadgets, we have dedicated this subject a separate paragraph at the end of this section.

To pre-configure a complete Dashboard, create a new object of type Dashboard. Define its layout and
then configure it in the usual way. Please observe here as well that users cannot change Dashboards
that have been integrated by them. Therefore, the changes you made in the Administration section
will also directly be applied to users.

197

18. Dashboards and Dadgets

18.1 Static HTML Dadgets

As an example we next show you how to add a simple chart to your dadget that combines several
techniques.

ReportServer’s dynamic list offers many export formats some of which, such as JSON, make it easy
to use the returned data directly from within javascript. We are going to use the jplot library, a
charting extension to the popular jquery library, to create just a very simple pie chart.

The RerportServer’s demo data comes with a dynamic list on top of the customer data aggregate:
T_AGG_CUSTOMER. This table contains all data relevant to specific customers. We are going to
visualize the number of customers per office using a simple pie chart.

The first step is to get the data. ReportServer allows to export reports directly via the URL

http://SERVER:PORT/reportserverbasedir/reportserver/reportexport

You can access a particular report via its id or via its key (in this case ensure that it is unique).
Suppose you have a report with the key myreport then you can export the report to say PDF by
calling

http://SERVER:PORT/reportserverbasedir/reportserver/reportexport&key=myreport&format=
pdf

There are two options to proceed, either create a variant first, that accesses the data we need for
the chart, or use the base report and access the data via the URL directly. We are going for the
second option here. Assuming the customer report has the key customer we can access the data
via the following URL

http://SERVER:PORT/reportserverbasedir/reportserver/reportexport&key=customer&c_
1=OFF_CITY|country&c_2=CUS_CUSTOMERNAME|count&agg_2=COUNT&format=json

You can test this on our demo system using the following URL (when prompted, login as
demoadmin/demoadmin)

http://demo.raas.datenwerke.net/reportserver/reportexport?id=22&c_1=OFF_CITY|country&
c_2=CUS_CUSTOMERNAME|count&agg_2=COUNT&format=json

Next we are going to create our pie chart. For this, log into your ReportServer and go to the
dashboard. Create a new dadget of type static html. Following is the code needed to create a
simple pie chart using the above data:

<html>
<head>
<script language="javascript" type="text/javascript"
src="http://www2.datenwerke.net/files/blog/js/jqplot/jquery.min.js">
</script>

<script language="javascript" type="text/javascript"
src="http://www2.datenwerke.net/files/blog/js/jqplot/jquery.jqplot.min.js">
</script>

<script class="include" type="text/javascript"
src="http://www2.datenwerke.net/files/blog/js/jqplot/plugins/jqplot.pieRenderer.min.js">

198

http://SERVER:PORT/reportserverbasedir/reportserver/reportexport
http://SERVER:PORT/reportserverbasedir/reportserver/reportexport&key=myreport&format=pdf
http://SERVER:PORT/reportserverbasedir/reportserver/reportexport&key=myreport&format=pdf
http://SERVER:PORT/reportserverbasedir/reportserver/reportexport&key=customer&c_1=OFF_CITY|country&c_2=CUS_CUSTOMERNAME|count&agg_2=COUNT&format=json
http://SERVER:PORT/reportserverbasedir/reportserver/reportexport&key=customer&c_1=OFF_CITY|country&c_2=CUS_CUSTOMERNAME|count&agg_2=COUNT&format=json
http://demo.raas.datenwerke.net/reportserver/reportexport?id=22&c_1=OFF_CITY|country&c_2=CUS_CUSTOMERNAME|count&agg_2=COUNT&format=json
http://demo.raas.datenwerke.net/reportserver/reportexport?id=22&c_1=OFF_CITY|country&c_2=CUS_CUSTOMERNAME|count&agg_2=COUNT&format=json

18.1. Static HTML Dadgets

</script>
<link rel="stylesheet" type="text/css"
href="http://www2.datenwerke.net/files/blog/js/jqplot/jquery.jqplot.min.css" />

</head>
<body style="background-color:#fff">

<div id="chart1" style="height:500px;width:500px; "></div>
<script type="text/javascript">
$.getJSON('http://rstest.datenwerke.net/reportserver/reportexport?id=22&c_1=OFF_
CITY|country&c_2=CUS_CUSTOMERNAME|count&agg_2=COUNT&format=json', function(json) {
var data = [];
$.each(json, function(key, val) {
data.push([val.country, Number(val.count)]);

});
var plot1 = jQuery.jqplot ('chart1', [data], {
title: 'Customers per office',
seriesDefaults: {
renderer: jQuery.jqplot.PieRenderer,
rendererOptions: {
showDataLabels: true,

 dataLabels: 'value'
}

}, grid: {
background: "#fff",
borderWidth: 0,
shadow: false

}, legend: {
show: true

}
});

});

</script>
</body>

</html>

There are three basic parts to this script. The first is the head section of the HTML, where we
load the required javascript libraries. Next is

$.getJSON('http://rstest.datenwerke.net/reportserver/reportexport?id=22&c_1=OFF_
CITY|country&c_2=CUS_CUSTOMERNAME|count&agg_2=COUNT&format=json', function(json) {
var data = [];
$.each(json, function(key, val) {
data.push([val.country, Number(val.count)]);

 });

which uses jquery to load the json data and to create a data array that is needed for jqplot. Finally
we have the actual plotting of the data.

var plot1 = jQuery.jqplot ('chart1', [data], {
title: 'Customers per office',
seriesDefaults: {
renderer: jQuery.jqplot.PieRenderer,
rendererOptions: {
showDataLabels: true,

 dataLabels: 'value'
}

}, grid: {
background: "#fff",
borderWidth: 0,
shadow: false

}, legend: {
show: true

}

199

18. Dashboards and Dadgets

});

18.2 Embedding Dashboards via the URL

Similarly to reports (see Section 7.11) you can also embed the ReportServer dashboard view or
individual dashboards without the ReportServer corpus. This may be interesting, for example, to
embed a dashboard in a portal like application. The base URL to embed dashboards is

http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinedashboard/

which then takes key value pairs where key and values are separated by colons (:) and the next key
is separated by an ampersand (&). To display the dashboard of the currently logged in user add the
type user that is:

http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinedashboard/type:user

This displays the complete dashboard view, that is, all dashboards of the currently logged on user.
You can also access a specific dashboard, say the first one by adding the type:single and nr:1
parameters as follows

http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinedashboard/type:single&
nr:1

Finally, you can also display a dashboard from the dashboard library via its id. In this case, also
select type:single but instead of nr use id. For example, to display the dashboard with id 25 use

http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinedashboard/type:single&
id:25

200

http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinedashboard/
http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinedashboard/type:user
http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinedashboard/type:single&nr:1
http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinedashboard/type:single&nr:1
http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinedashboard/type:single&id:25
http://SERVER:PORT/reportserverbasedir/ReportServer.html#inlinedashboard/type:single&id:25

Chapter 19

SFTP Server

As already described in previous sections, ReportServer primarily saves objects in tree structures.
The SFTP server integrated in ReportServer provides a very comfortable approach to access these
file system like structures. To connect to the integrated SFTP server, it needs to be configured
beforehand. For further information on this refer to the Installation and Configuration instructions.

The standard configuration provides port 8022 for connections to the SFTP server. Connections
use the SFTP (SSH File Transfer) protocol. The registration information (user name and password)
usually used in ReportServer shall apply also here. Principally, all users who are entitled to log in,
can also connect via SFTP. However, the assigned rights will be checked as it is the case for the
access via the web interface. This ensures that also by logging in via SFTP it is not possible to
access unreleased objects.

Note that if you don’t need the SFTP server, you can disable it via configuration. After a
ReportServer restart, the SFTP server will not be started if it was disabled previously.

Once the connection is established you are in the root directory. Here, analogously to the presentation
in Terminal, the main ReportServer modules are presented as a folder each.

In the module directories, the respective object trees are structured in folders and files as well.
Directories whose name starts with #v- provide specific functions such as XML export of the object,
or direct access to the report definition of graphical reports.

203

Chapter 20

Maintenance

In this chapter we consider general administrative maintenance tasks.

20.1 Testing User Specific Settings (su)

Especially when handling support requests it may be helpful to see ReportServer as a specific
user sees it. To allow administrators to log in as a specific user without knowing their passwords
ReportServer has a su function (substitute user identity).

To invoke the su function press CTRL+Shift+L which opens a dialogue that allows to select a
specific user and to login as that user. As this is a highly sensitive function, only users with the
necessary access rights can invoke it. Who can access the functionality is controlled via the generic
right su. In addition a user needs the execute right on the user that s/he wants to log in (cf.
Chapter 3 User and Permission Management).

Note that granting the su functionality is a potential security risk, as it is difficult to control
exactly what rights a user can obtain via logging in as another user.

20.2 Logging

All actions, such as changes to reports or execution of reports are logged in the ReportServer’s
audit log.

The log is split over two database tables. The table RS_AUDIT_LOG_ENTRY contains all logged actions
while the table RS_AUDIT_LOG_PROPERTY contains additional information for each action.

Note that the tables are not truncated automatically and that on a system with heavy load the
tables can thus become very big. It is hence recommended to set up an automatic archiving task.
This can be achieved using a ReportServer script, or externally using the native scheduler of your
RDBMS.

205

20. Maintenance

20.3 Recovering of Objects

Besides logging all relevant actions in the audit-log, ReportServer also documents object changes
(for example, how a report was changed). This allows to compare objects to older versions or
even to recover older versions if necessary. To access the versioning capabilities use the Terminal
command rev. rev list displays a list with all versions of an object. rev restore allows to restore
an older version.

206

Appendix A

Expression Language

In many cases ReportServer allows to insert formulas which are interpreted at runtime instead of static
values. Such expressions are always initiated by a dollar sign and an opening curly bracket and closed
with a closing curly bracket. The actual expression is given within the curly brackets: ${formula/ ⤦

 Ç expression}. ReportServer uses the unified expression language (UE) standardized in JSR-245
(https://www.jcp.org/en/jsr/detail?id=245 and http://www.oracle.com/technetwork/
java/unifiedel-139263.html).

An expression can be a simple calculation or string function such as ${3 + 5} which would compute
the number 8. Depending on the context different objects/replacements (such as the today object
in filters, see the User Guide for further information) are available.

Besides the basic arithmetic operators you can use the mathematical functions defined in Table A.1.

To work with strings the following functions can be used in addition to the methods provided by the
java string object:

sutils:left(String, int) Returns the first n characters of the string.

sutils:right(String, int) Returns the last n characters of the string.

The ternary operator can be used to define conditional expressions:
Condition ? Expression if condition evaluates to true : Expression

if condition evaluates to false.

Thus the expression ${math:random() < 0.5 ? true : false} returns boolean value which is
TRUE if the random number is less than 0.5 and FALSE otherwise. Thus this expression returns TRUE
with probability 50%. Depending on the context various objects can be accessed and methods
can be called on these objects. In filters, for example, the object "today" can be used to specify
dates. To call a method on an object write ${object.methodname()}. The today object returns the
current date. To return the first of the current month you can use the method firstDay and write:
${today.firstDay()}.

209

https://www.jcp.org/en/jsr/detail?id=245
http://www.oracle.com/technetwork/java/unifiedel-139263.html
http://www.oracle.com/technetwork/java/unifiedel-139263.html

A. Expression Language

Table A.1: List of mathematical functions

math:random() Returns a random number between 0 and 1

math:sin(Double) Computes the sine function.

math:cos(Double) Computes the cosine function.

math:tan(Double) Computes the tangent function.

math:abs(Double) Returns the absolute value.

math:ceil(Double) Returns the smallest double value that is greater or equal to the argument
and which is equal to a mathematical integer.

math:floor(Double) Returns the largest double value that is less or equal to the argument
and which is equal to a mathematical integer.

math:round(Double) Returns the rounded number (as an integer).

math:max(Double, Double) Returns the greater of the two arguments.

math:min(Double, Double) Returns the smaller of the two arguments.

math:pow(Double, Double) Returns the first value raised to the power of the second.

math:log(Double) Computes the natural logarithm.

math:exp(Double) Computes the value e raised to the power of the argument.

math:sqrt(Double) Computes the square root of the argument.

math:signum(Double) Computes the signum function.

210

Appendix B

Demo Data

Table Description
Customers Master data of all customers
Employees Information on all employees
Offices Data on all offices
OrderDetails Detailed data for every order
Orders Base data on orders
Payments Information on payments
ProductLines Information on product lines
Products Products
T_AGG_CUSTOMER Aggregated data per customer
T_AGG_EMPLOYEE Aggregated data per employee
T_AGG_ORDER Aggregated data per order
T_AGG_PAYMENT Aggregated data per payment
T_AGG_PRODUCT Aggregated data per product

Customers

Column Type
customerNumber int(11)
customerName varchar(50)
contactLastName varchar(50)
contactFirstName varchar(50)
phone varchar(50)
addressLine1 varchar(50)
addressLine2 varchar(50)
city varchar(50)
state varchar(50)
postalCode varchar(15)
country varchar(50)
salesRepEmployeeNumber int(11)
creditLimit decimal(12,2)

Employees

213

B. Demo Data

Column Type
employeeNumber int(11)
lastName varchar(50)
firstName varchar(50)
extension varchar(10)
email varchar(100)
officeCode varchar(10)
reportsTo int(11)
jobTitle varchar(50)

Offices
Column Type
officeCode varchar(10)
city varchar(50)
phone varchar(50)
addressLine1 varchar(50)
addressLine2 varchar(50)
state varchar(50)
country varchar(50)
postalCode varchar(15)
territory varchar(10)

OrderDetails
Column Type
orderNumber int(11)
productCode varchar(15)
quantityOrdered int(11)
priceEach decimal(12,2)
orderLineNumber smallint(6)

Orders
Column Type
orderNumber int(11)
orderDate datetime
requiredDate datetime
shippedDate datetime
status varchar(15)
comments text
customerNumber int(11)

Payments

Column Type

214

customerNumber int(11)
checkNumber varchar(50)
paymentDate datetime
amount decimal(12,2)

PrductLines
Column Type
productLine varchar(50)
textDescription varchar(4000)
htmlDescription mediumtext
image mediumblob

Products
Column Type
productCode varchar(15)
productName varchar(70)
productLine varchar(50)
productScale varchar(10)
productVendor varchar(50)
productDescription text
quantityInStock smallint(6)
buyPrice decimal(12,2)
MSRP decimal(12,2)

T_AGG_CUSTOMER

Column Type
CUS_ADDRESSLINE1 varchar(50)
CUS_ADDRESSLINE2 varchar(50)
CUS_CITY varchar(50)
CUS_CONTACTFIRSTNAME varchar(50)
CUS_CONTACTLASTNAME varchar(50)
CUS_COUNTRY varchar(50)
CUS_CREDITLIMIT decimal(12,2)
CUS_CUSTOMERNAME varchar(50)
CUS_CUSTOMERNUMBER int(11)
CUS_PHONE varchar(50)
CUS_POSTALCODE varchar(15)
CUS_SALESREPEMPLOYEENUMBER int(11)
CUS_STATE varchar(50)
CUS_LATITUDE decimal(9,6)
CUS_LONGITUDE decimal(9,6)
EMP_EMAIL varchar(100)
EMP_EMPLOYEENUMBER int(11)

215

B. Demo Data

EMP_EXTENSION varchar(10)
EMP_FIRSTNAME varchar(50)
EMP_JOBTITLE varchar(50)
EMP_LASTNAME varchar(50)
EMP_OFFICECODE varchar(10)
EMP_REPORTSTO int(11)
OFF_ADDRESSLINE1 varchar(50)
OFF_ADDRESSLINE2 varchar(50)
OFF_CITY varchar(50)
OFF_COUNTRY varchar(50)
OFF_OFFICECODE varchar(10)
OFF_PHONE varchar(50)
OFF_POSTALCODE varchar(15)
OFF_STATE varchar(50)
OFF_TERRITORY varchar(10)
Y_VOLUME decimal(12,2)
Y_ACC_BALANCE decimal(12,2)

T_AGG_EMPLOYEE

Column Type
EMP_EMAIL varchar(100)
EMP_EMPLOYEENUMBER int(11)
EMP_EXTENSION varchar(10)
EMP_FIRSTNAME varchar(50)
EMP_JOBTITLE varchar(50)
EMP_LASTNAME varchar(50)
EMP_OFFICECODE varchar(10)
EMP_REPORTSTO int(11)
OFF_ADDRESSLINE1 varchar(50)
OFF_ADDRESSLINE2 varchar(50)
OFF_CITY varchar(50)
OFF_COUNTRY varchar(50)
OFF_OFFICECODE varchar(10)
OFF_PHONE varchar(50)
OFF_POSTALCODE varchar(15)
OFF_STATE varchar(50)
OFF_TERRITORY varchar(10)
Y_NUM_CUSTOMERS bigint(21)
Y_SALES_AMOUNT decimal(12,2)

T_AGG_ORDER

Column Type
OD_ORDERLINENUMBER smallint(6)
OD_ORDERNUMBER int(11)
OD_PRICEEACH decimal(12,2)

216

OD_PRODUCTCODE varchar(15)
OD_QUANTITYORDERED int(11)
OR_COMMENTS text
OR_CUSTOMERNUMBER int(11)
OR_ORDERDATE datetime
OR_ORDERNUMBER int(11)
OR_REQUIREDDATE datetime
OR_SHIPPEDDATE datetime
OR_STATUS varchar(15)
PL_HTMLDESCRIPTION mediumtext
PL_IMAGE mediumblob
PL_PRODUCTLINE varchar(50)
PL_TEXTDESCRIPTION varchar(4000)
PRO_BUYPRICE decimal(12,2)
PRO_MSRP decimal(12,2)
PRO_PRODUCTCODE varchar(15)
PRO_PRODUCTDESCRIPTION text
PRO_PRODUCTLINE varchar(50)
PRO_PRODUCTNAME varchar(70)
PRO_PRODUCTSCALE varchar(10)
PRO_PRODUCTVENDOR varchar(50)
PRO_QUANTITYINSTOCK smallint(6)
CUS_ADDRESSLINE1 varchar(50)
CUS_ADDRESSLINE2 varchar(50)
CUS_CITY varchar(50)
CUS_CONTACTFIRSTNAME varchar(50)
CUS_CONTACTLASTNAME varchar(50)
CUS_COUNTRY varchar(50)
CUS_CREDITLIMIT decimal(12,2)
CUS_CUSTOMERNAME varchar(50)
CUS_CUSTOMERNUMBER int(11)
CUS_PHONE varchar(50)
CUS_POSTALCODE varchar(15)
CUS_SALESREPEMPLOYEENUMBER int(11)
CUS_STATE varchar(50)
CUS_LATITUDE decimal(9,6)
CUS_LONGITUDE decimal(9,6)
EMP_EMAIL varchar(100)
EMP_EMPLOYEENUMBER int(11)
EMP_EXTENSION varchar(10)
EMP_FIRSTNAME varchar(50)
EMP_JOBTITLE varchar(50)
EMP_LASTNAME varchar(50)
EMP_OFFICECODE varchar(10)
EMP_REPORTSTO int(11)
OFF_ADDRESSLINE1 varchar(50)
OFF_ADDRESSLINE2 varchar(50)
OFF_CITY varchar(50)

217

B. Demo Data

OFF_COUNTRY varchar(50)
OFF_OFFICECODE varchar(10)
OFF_PHONE varchar(50)
OFF_POSTALCODE varchar(15)
OFF_STATE varchar(50)
OFF_TERRITORY varchar(10)

T_AGG_PAYMENT

Column Type
CUS_ADDRESSLINE1 varchar(50)
CUS_ADDRESSLINE2 varchar(50)
CUS_CITY varchar(50)
CUS_CONTACTFIRSTNAME varchar(50)
CUS_CONTACTLASTNAME varchar(50)
CUS_COUNTRY varchar(50)
CUS_CREDITLIMIT decimal(12,2)
CUS_CUSTOMERNAME varchar(50)
CUS_CUSTOMERNUMBER int(11)
CUS_PHONE varchar(50)
CUS_POSTALCODE varchar(15)
CUS_SALESREPEMPLOYEENUMBER int(11)
CUS_STATE varchar(50)
EMP_EMAIL varchar(100)
EMP_EMPLOYEENUMBER int(11)
EMP_EXTENSION varchar(10)
EMP_FIRSTNAME varchar(50)
EMP_JOBTITLE varchar(50)
EMP_LASTNAME varchar(50)
EMP_OFFICECODE varchar(10)
EMP_REPORTSTO int(11)
OFF_ADDRESSLINE1 varchar(50)
OFF_ADDRESSLINE2 varchar(50)
OFF_CITY varchar(50)
OFF_COUNTRY varchar(50)
OFF_STATE varchar(50)
OFF_TERRITORY varchar(10)
OFF_OFFICECODE varchar(10)
OFF_PHONE varchar(50)
OFF_POSTALCODE varchar(15)
PAY_AMOUNT decimal(12,2)
PAY_CHECKNUMBER varchar(50)
PAY_CUSTOMERNUMBER int(11)
PAY_PAYMENTDATE datetime

T_AGG_PRODUCT

218

Column Type
PL_HTMLDESCRIPTION mediumtext
PL_IMAGE mediumblob
PL_PRODUCTLINE varchar(50)
PL_TEXTDESCRIPTION varchar(4000)
PRO_BUYPRICE decimal(12,2)
PRO_MSRP decimal(12,2)
PRO_PRODUCTCODE varchar(15)
PRO_PRODUCTDESCRIPTION text
PRO_PRODUCTLINE varchar(50)
PRO_PRODUCTNAME varchar(70)
PRO_PRODUCTSCALE varchar(10)
PRO_PRODUCTVENDOR varchar(50)
PRO_QUANTITYINSTOCK smallint(6)
Y_NUM_SOLD decimal(32,0)
Y_AVG_PRICE decimal(12,2)

219

	Contents
	1 Preamble
	2 First Steps
	2.1 Configuration and installation
	2.2 Login
	2.3 Creating a datasource
	2.4 Creating your First Report
	2.5 Importing a Graphical Report
	2.6 Creating users
	2.7 Terminal and FileServer

	3 User and Permission Management
	3.1 The User Tree
	3.2 Permission Management

	4 Datasources
	4.1 Relational Databases
	4.2 Amazon Redshift
	4.3 Google BigQuery
	4.4 Teradata
	4.5 Storage of Database Passwords
	4.6 Datasource Pool
	4.7 CSV Lists
	4.8 Script datasources
	4.9 BIRT Report datasource
	4.10 Mondrian Datasource
	4.11 Datasource Bundle
	4.12 Configuration of a Standard Datasource

	5 Datasinks
	5.1 Email - SMTP
	5.2 Table datasinks
	5.3 SFTP
	5.4 FTPS
	5.5 FTP
	5.6 Samba - SMB/CIFS
	5.7 Amazon S3
	5.8 SCP
	5.9 Local Filesystem
	5.10 Printer Datasinks
	5.11 Script Datasinks
	5.12 OAuth2-authenticated datasinks
	5.13 Dropbox
	5.14 OneDrive - SharePoint (O365)
	5.15 Google Drive
	5.16 Box

	6 File System
	6.1 Configuration Files
	6.2 Filing of Scripts
	6.3 Accessing Resources by URL

	7 Report Management
	7.1 Fundamentals
	7.2 The Dynamic List
	7.3 Working with Parameters
	7.4 JasperReports
	7.5 Eclipse Birt
	7.6 SAP Crystal Reports
	7.7 Saiku / Mondrian Reports
	7.8 JXLS Reports
	7.9 Script Reports
	7.10 Grid Editor Reports
	7.11 Executing Reports via the URL
	7.12 Report Properties
	7.13 Report Metadata
	7.14 Drill Down Reports

	8 Global Constants
	9 User Variables
	9.1 Defining User Variables
	9.2 Allocating User Variables
	9.3 Using User Variables in Reports

	10 Import and Export
	10.1 Exporting
	10.2 Importing

	11 Scheduling of Reports
	11.1 Technical Backgrounds to Scheduler Jobs
	11.2 Filtering by the Status of a Job
	11.3 Notifications
	11.4 Terminal Commands
	11.5 Conditional Scheduling
	11.6 Creating and Using a Condition Report
	11.7 Predefined Conditions
	11.8 Defining a Simple Condition via Scripting

	12 Theming
	13 Terminal
	13.1 Using the Terminal
	13.2 The Virtual File System
	13.3 Assigning Aliases
	13.4 Scripts
	13.5 Object Resolver

	14 ReportServer Scripting
	14.1 A first Hello World
	14.2 How to Handle Errors
	14.3 Administrative Scripts
	14.4 Changing the Data Model
	14.5 Enhancing ReportServer with Scripts
	14.6 Scheduling of Scripts
	14.7 Accessing Scripts by URL

	15 Integrating ReportServer with an Active Directory using LDAP
	15.1 Synchronizing Users
	15.2 Authenticating Users
	15.3 Possible Improvements

	16 Terminal Operators
	16.1 Write-into-file operators
	16.2 Write-into-datasink operator

	17 Terminal Commands
	17.1 birt
	17.2 cat
	17.3 cd
	17.4 clearInternalDbCache
	17.5 clearInternalScriptCache
	17.6 columnsExist
	17.7 columnsMetadata
	17.8 config
	17.9 connPoolStats
	17.10 copyTableContents
	17.11 cp
	17.12 createTextFile
	17.13 datasourceMetadata
	17.14 deployReport
	17.15 desc
	17.16 diffconfigfiles
	17.17 dirmod
	17.18 echo
	17.19 editTextFile
	17.20 eliza
	17.21 env
	17.22 exec
	17.23 export all
	17.24 groupmod
	17.25 haspermission
	17.26 hello
	17.27 id
	17.28 info
	17.29 import all
	17.30 kill
	17.31 ldapfilter
	17.32 ldapguid
	17.33 ldapimport
	17.34 ldapinfo
	17.35 ldapschema
	17.36 ldaptest
	17.37 listlogfiles
	17.38 listpath
	17.39 locate
	17.40 ls
	17.41 meminfo
	17.42 mkdir
	17.43 mv
	17.44 onedrive
	17.45 pkg
	17.46 ps
	17.47 pwd
	17.48 rcondition
	17.49 reportmod
	17.50 rev
	17.51 rm
	17.52 scheduleScript
	17.53 scheduler
	17.54 sql
	17.55 tableExists
	17.56 ssltest
	17.57 teamspacemod
	17.58 unzip
	17.59 updateAlias
	17.60 updatedb
	17.61 usermod
	17.62 variantTest
	17.63 viewlogfile
	17.64 xslt
	17.65 zip

	18 Dashboards and Dadgets
	18.1 Static HTML Dadgets
	18.2 Embedding Dashboards via the URL

	19 SFTP Server
	20 Maintenance
	20.1 Testing User Specific Settings (su)
	20.2 Logging
	20.3 Recovering of Objects

	A Expression Language
	B Demo Data

