InfoFabrik

ReportServer
Configuration Guide 4.6.0

InfoFabrik

ReportServer
Configuration Guide 4.6.0

InfoFabrik GmbH, 2023

http://www.infofabrik.de/
http://www.reportserver.net/

Copyright 2007 - 2023 InfoFabrik GmbH. All rights reserved.

This document is protected by copyright. It may not be distributed or reproduced in whole or in
part for any purpose without written permission of InfoFabrik GmbH. The information included in

this publication can be changed at any time without prior notice.

All rights reserved.

Contents

1 Preamble

2 Installation

2.1 Automatic Installation
2.2 Manual Installation

2.3 Running ReportServer on JBoss Wildfly

2.4 Installing the Demo Data

3 External Configuration Files

3.1 persistence.properties
3.2 reportserver.properties

4 Configuration

4.1 Datasources
4.2 Datasinks
4.3 Dynamic Lists
4.4 Setting up the Scheduler
4.5 Remote RS Server Settings
4.6 Report execution error log settings
4.7 Exportsettings.
4.8 Ul Customization
4.9 Extensions
4.10 Executing Reports using URLs
4.11 Misc Settings
4.12 Scheduler Settings
4.13 Localization Settings
4.14 Security related properties
4.15 SSO related properties

5 External Configdir

Contents

O 00 O o1 G

Contents

A Config File Reference

67

Chapter 1

Preamble

Business Intelligence

Business Intelligence (Bl) describes the ability to jointly analyze all of a company’s data, distilling
relevant information to be used to foster better business decisions. The foundation of any Bl
solution is the careful preprocessing of existing data, for example, in a data warehouse.

ReportServer acts as the gateway between end-users and the collected data, allowing users to
efficiently access and analyze the available data. From camera-ready evaluations to fine-grained
ad-hoc reporting; ReportServer provides you with the tools to support your daily work.

Target Audience
This document is designed for future administrators of ReportServer.

Separate manuals and instructions illustrate the various aspects of ReportServer.

ReportServer Configuration Guide: Describes the installation of ReportServer as well as the basic
configuration options.

ReportServer User Guide: The user guide describes ReportServer from the point of view of the
ultimate user. It includes an in-depth coverage of dynamic lists (ReportServer's adhoc reporting
solution), execution of reports, scheduling of reports, and much more.

ReportServer Administrator Guide: The administrator guide describes ReportServer from the
point of view of administrators that are tasked with maintaining the daily operation of the
reporting platform including the development of reports, managing users and permissions,
monitoring the system state, and much more.

ReportServer Scripting Guide: The ReportServer scripting guide covers the scripting capabilities
of ReportServer which can be used for building complex reports as well as for extending
the functionality of ReportServer or performing critical maintenance tasks. It extends the
introduction to these topics given in the administrator guide.

Chapter 2

Installation

ReportServer is a web-application based on the Java Servlet technology and, thus, runs in an
application server (such as Apache Tomcat). Being a Java application ReportServer supports any
operating system that has a Java runtime environment and for which a supported application server
is available. All application metadata is stored in a relational database.

ReportServer is available for download in .zip file format for deployment within an application
server. Additional options, including native installers for Windows, docker images are available here:
http://reportserver.net/download.

While the manual installation provides the most flexibility, it requires some prior knowledge about
the deployment of web applications and the operating of an application server, so we recommend
this for system administrators and advanced users. The Windows packages on the other hand are
completely self contained and can be installed with only a couple of clicks.

You can download ReportServer from http://reportserver.net/download.

2.1 Automatic Installation

The ReportServer installer stack is available for Windows and provides a pre-configured installation
of ReportServer with Apache Tomcat as application server and MariaDB as database backend. The
installers are available from http://reportserver.net/download. The installation wizard guides
you through the installation providing you with the option to pre-configure parts of ReportServer
and you can choose whether to install the demo package or not (we note that you can also manually
install the demo data later; see Section 2.4). In case you already have an application server or
MariaDB database running and the default ports are in use, you are asked to provide alternative
ports.

Installation on Linux machines should be done manually or using the docker images available here:
http://reportserver.net/download.

http://reportserver.net/download
http://reportserver.net/download
http://reportserver.net/download
http://reportserver.net/download

2. Installation

2.2 Manual Installation

The manual installation allows you to fine-tune the installation process to your environment and is
generally recommended for any production environment.

Installation of the Java Runtime Environment (JRE)

ReportServer requires an installed Java Runtime Environment (JRE) in version 11 or newer.

Further, you need some extra configuration which can be done in the setenv.bat / setenv.sh of your
Tomcat environment. Specifically, the following configuration is needed:

e -add-opens=java.base/java.net=ALL-UNNAMED

e -add-opens=java.base/jdk.internal.ref=ALL-UNNAMED

® -add-opens=java.base/jdk.internal.reflect=ALL-UNNAMED
e -add-opens=java.base/java.lang.invoke=ALL-UNNAMED

e -add-opens=java.base/java.util=ALL-UNNAMED

e -Djavax.net.ssl.trustStoreType=JKS

e -Dfile.encoding=UTF-8

-Djava.awt.headless=true

The following is an example configuration in our Windows packages where the configuration
mentioned above is integrated:

set
JAVA_OPTS=++JvmOptions="-Drs.configdir=C:/infofabrik/v

s reportserverenterprise-x.x.x-yyyy-0/apps/reportserver//

s reportserver -conf"
++JvmOptions="-Dfile.encoding=UTF-8" ++JvmOptions="-Djava.awt.headless/
=true" ++JvmOptions="--add-opens=java.base/java.net=ALL-UNNAMED" /
++JvmOptions="--add-opens=java.base/jdk.internal .ref=ALL-UNNAMED" Y
++JvmOptions="--add-opens=java.base/jdk.internal.reflect=ALL-/
UNNAMED" ++JvmOptions="--add-opens=java.base/java.lang.invoke=ALLY
-UNNAMED" ++JvmOptions="--add-opens=java.base/java.util=ALL-/
UNNAMED" ++JvmOptions="-Djavax.net.ssl.trustStoreType=JKS" --/
JvmMs 512 --JvmMx 1536 set JDK_JAVA_OPTIONS= % JDK_JAVA_OPTIONSY

R EE A AN

Tip. If the host computer supports it, you should use the 64-bit edition.

2.2. Manual Installation

Installation and configuration of the application server

ReportServer can be configured to run in any application server that supports the Java Servlet
Technology (e.g., Jetty, Tomcat or JBoss Wildfly). We recommend using Apache Tomcat (http:
//tomcat .apache.org/).

In order to smoothly run ReportServer it is necessary to provide the application server with sufficient
memory which usually means that you have to increase the default values. If too little memory
is available then ReportServer might not start at all or your users might experience performance
problems. The following recommendations are to be understood as lower bounds. Depending on
your environment (the types of reports that you want to run and the number of users the system is
to handle) you might need to increase these (especially the available heap size).

We recommend to set the available permanent generation space (PermGenSpace) to at least 256mb
(better 512mb). The maximal available heap size should be at least 1.5gb.

Furthermore, the encoding should be set to UTFS8.

A sample configuration of the VM might look as follows:

-Xmx4096M
-XX:MaxPermSize=512M
-Dfile.encoding=UTF8

Further information can be found, for example, at http://www.oracle.com/technetwork/java/
javase/tech/vmoptions- jsp-140102.html.

Unpack the zip-archive

Stop the application server, if it was running, and unpack the ReportServer archive to a directory
called reportserver below the webapps directory of your application server (on Windows this could be,
for example, C:\Program Files\Apache Tomcat\webapps; on Linux /var/tomcat/webapps)

Setup the database

Before we can start the application server we need to configure the database connection that
ReportServer uses to store its metadata. ReportServer internally uses JPA with Hibernate (http:
//www.hibernate.org/) which allows us to support most popular database systems. A list of the
database systems supported by Hibernate can be found at https://developer. jboss.org/docs/
DOC-13921.

Installation of the JDBC driver

ReportServer comes bundled with drivers for the open source databases MySQL (http://www.
mysql.com) and PostgreSQL (http://www.postgresql.org). If you use either of these databases
you do not need to manually copy the jdbc driver to the 1ib directory. If you use any other database
you need to copy the corresponding JDBC driver to ReportServer's 1ib directory, that is, to
directory:

path_to_webapps/reportserver/WEB-INF/1ib.

http://tomcat.apache.org/
http://tomcat.apache.org/
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.hibernate.org/
http://www.hibernate.org/
https://developer.jboss.org/docs/DOC-13921
https://developer.jboss.org/docs/DOC-13921
http://www.mysql.com
http://www.mysql.com
http://www.postgresql.org

2. Installation

Creating the ReportServer schema

Next we need to setup the necessary database tables. For this, choose the create script corresponding
to your database system from the directory “ddI" (directly beneath the reportserver directory)
and execute it on your database. For a PostgreSQL database, for example, use the file:

reportserver-RSx.x.x-yyyy-schema-PostgreSQL_CREATE.sql

Adapt the persistence.properties config file

To complete the database setup we need to configure the connection properties. For this, go to
WEB-INF/classes and edit the file persistence.properties. Thefile persistence.properties
contains the configuration of the ReportServer database connection. You can find further information
on this config file in Chapter 3. Following is a sample configuration for MySQL.
hibernate.dialect=net.datenwerke.rs.utils.hibernate.MySQL5Dialect
hibernate.connection.driver_class=com.mysql.cj.jdbc.Driver
hibernate.connection.url=jdbc:mysql://localhost:3306/reportserver

hibernate.connection.username=root
hibernate.connection.password=root

The config file reportserver.properties

The final step in the installation is to check the (and possibly adapt) the main configuration
settings. These are stored in the the config file reportserver.properties which is located in the
WEB-INF/classes directory. It contains basic properties concerning the available authentication
procedures used by ReportServer as well as configuration for cryptopgraphic functionality used in
ReportServer.

A detailed description of the available parameters are given in Chapter 3 External Configuration
Files.

Application Server Start

You can now start the application server. Once the application server is started up ReportServer
should be accessible, for example, under the URL http://localhost:8080/reportserver. Re-
portServer has generated the root user with which you can login:

username: root
password: root

2.3 Running ReportServer on JBoss Wildfly

To run ReportServer on JBoss Wildfly only a few configuration options need to be considered. First,
you should ensure that JBoss is configured to use sufficient memory. The necessary changes can
be made in file wildfly/bin/standalone.conf (or standalone.conf.bat for windows systems). To run
ReportServer you should provide JBoss with at least 1.5 GB of heap space. Depending on the
number of users, this value should be increased. Following is an example configuration:

JAVA_OPTS="-Xms64m -Xmx2g -XX:MaxPermSize=256m -Djava.net./
 preferIPv4Stack=true"

http://localhost:8080/reportserver

2.4. Installing the Demo Data

Besides increasing the memory as described above, you will need to add an application descriptor
file called jboss-deployment-structure.xml. You will need to place this configuration file into
the WEB-INF directory of ReportServer. Following is the content of the descriptor.

<?7xml version="1.0" encoding="UTF-8"7>
<jboss-deployment -structure>
<deployment>
<exclusions>
<module name="org.hibernate" />
<module name="org.antlr" />
</exclusions>
<exclude -subsystems>
<subsystem name="weld" />
<subsystem name="org.hibernate" />
<subsystem name="org.hibernate.validator" />
<subsystem name="org.antlr" />
<subsystem name="jpa" />
</exclude -subsystems >
<dependencies>
<module name="org.bouncycastle" />
</dependencies>
</deployment >
</jboss-deployment -structure>

Having increased the memory and added the jboss-deployment-structure.xml to the ReportServer
WEB-INF directory, you are now good to go.

2.4 Installing the Demo Data

ReportServer comes with a demo data package containing the example setup of the fictionally toy
company “1-to-87". In order to install the demodata package you should login with a root account
(if you used the Windows installer, this would be the account you setup during installation). Also
note that the installation of the demodata will remove any existing data in the system. To
install the demo package login to ReportServer and open the terminal by pressing

CTRL+ALT+T
Then, to initiate the installation, run the command
pkg install -d demobuilder -VERSION_NR

Here, “VERSION NR" must be replaced by the correct version, which can be obtained by using the
autocomplete feature of the terminal. Simply hit TAB to get a list of options:

pkg install -d [TAB]

Chapter 3

External Configuration Files

ReportServer has only two (external) config files which hold information on the database connection
as well as information on available authentication methods. All other configuration is done from
within ReportServer. The file persistence.properties (in directory WEB-INF/classes) holds
information on the database connection that is used by ReportServer. The configuration file
reportserver.properties (in the same directory) holds information about available authentication
schemes, as well as, cryptography related properties.

By default the external configuration files are located in WEB-INF/classes and thus within the
web-apps folder. It is advisable to move these files to an external location as this allows easier
upgrades to future versions. For a detailed description of how to use an external configuration dir
see Chapter 5.

3.1 persistence.properties

ReportServer uses the Java Persistence API (JPA) to abstract from the actual database system when
storing application data. The necessary configuration is made in the persistence.properties
config file.

Example

hibernate.dialect=net.datenwerke.rs.utils.hibernate.MySQL5Dialect
hibernate.connection.driver_class=com.mysql.cj.jdbc.Driver
hibernate.connection.url=jdbc:mysql://localhost :3306/reportserver
hibernate.connection.username=rs

hibernate.connection.password=rs

Note that to configure the JPA/Hibernate settings, we are not editing the standard JPA
configuration file (usually called persistence.xml) but a ReportServer properties file.

Connection properties

ReportServer supports all databases that are supported by Hibernate. A list of the database
systems supported by Hibernate can be found on the hibernate webpages®. We recommend to run

'https://developer. jboss.org/docs/DOC-13921

11

https://developer.jboss.org/docs/DOC-13921

3. External Configuration Files

ReportServer on one of the following databases for which we now give example configurations:

Example config for MySQL
MySQL
hibernate.
hibernate.
hibernate

dialect=net.datenwerke.rs.utils.hibernate.MySQL5Dialect
connection.driver_class=com.mysql.cj.jdbc.Driver
url=jdbc:mysql://localhost :3306/reportserver
username=rs

.connection.
hibernate.connection.

hibernate.connection.password=rs

Note the custom dialect net.datenwerke.rs.utils.hibernate.MySQL5Dialect.

Example config for MariaDB

MariaDB
hibernate.dialect=net.datenwerke.rs.utils.hibernate.MariaDbDialect
hibernate.connection.driver_class=org.mariadb. jdbc.Driver
hibernate.connection.url=jdbc:mariadb://localhost :3306/reportserver
hibernate.connection.username=rs

hibernate.connection.password=rs

Example config for PostgreSQL
PostgreSQL
hibernate.dialect=net.datenwerke.rs.utils.hibernate./
 PostgreSQLDialect
hibernate.
hibernate.

connection.driver_class=org.postgresql.Driver
url=jdbc:postgresql://localhost/postgres

username=rs

connection.

hibernate.connection.

hibernate.connection.password=rs

hibernate.connection.autocommit=false

Example config for Oracle

#
#
#

Oracle

, version

#

Select ONE of the following dialects depending on your Oracle /

hibernate.dialect=net.datenwerke.rs.utils.hibernate.0OraclelOgDialect

#

hibernate.dialect=net.datenwerke.rs.utils.hibernate./

¢ Oraclel2cDialect

#

hibernate.
hibernate.
hibernate
hibernate.
hibernate.

connection.
connection.
.connection.
connection.
connection.

driver_class=oracle. jdbc.driver.OracleDriver
url=jdbc:oracle:thin:@localhost :1521:MYDB
username=rs

password=rs

autocommit=false

Example config for SQL Server

SQL Server
hibernate.dialect=net.datenwerke.rs.utils.hibernate./
& SQLServer2008Dialect

12

net.datenwerke.rs.utils.hibernate.MySQL5Dialect

3.2. reportserver.properties

hibernate.connection.driver_class=com.microsoft.sqlserver. jdbc./
 SQLServerDriver

hibernate.connection.url=jdbc:sqlserver://localhost/sqlserver :1433; 7
 databaseName=mydb

hibernate.connection.username=rs

hibernate.connection.password=rs

hibernate.connection.autocommit=false

Note, that the JDBC driver corresponding to your database must be copied to the directory

path_to_webapps/reportserver/WEB-INF/1ib or to your external-configuration directory.

Connection Pool (C3P0) Settings

Hibernate uses the C3P0 connection pool. The following properties allow to configure C3P0 as used
by Hibernate. Note that this does not have any effect on the connection pool used by ReportServer
for handling reporting.

hibernate.c3p0.acquire_increment=5
hibernate.c3p0.idle_test_period=60
hibernate.c3p0.timeout=3600
hibernate.c3p0.max_size=30
hibernate.c3p0.max_statements=0
hibernate.c3p0.min_size=5

See also http://www.mchange.com/projects/c3p0/index.html#configuration.

The most commonly used properties are:

Property Description

acquire_increment | Defines how many connections are acquired simultaniously by c3p0, if all
connections currently in the pool are busy.

idle_test_period | If not zero, C3PO will test idle connections in this intervall.

timeout Number of seconds a pooled connection can remain idle before it is
discarded. Zero means that idle connections are never discarded.

max_size Maximum number of connections in the pool.

max_statements Maximal size of the statement cache. Zero means that statements should
not be cached.

min_size The minimum number of connections to be kept in the pool.

3.2 reportserver.properties

The config file reportserver.properties contains settings which are needed at ReportServer
startup time as well as settings concerning cryptographic functionality. All properties are stored as
attribute value pairs.

Excerpt from the reportserver.properties file

rs.crypto.pbe.passphrase = The Passphrase
rs.crypto.pbe.keylength = 128

13

http://www.mchange.com/projects/c3p0/index.html#configuration

3. External Configuration Files

Crypto settings

Passwords (such as, for example, datasource passwords®) that are stored in ReportServer will be
encrypted. ReportServer uses AES and password based encryption. For this, you need to configure
the following properties:

— rs.crypto.pbe.salt

the salt that is used on key generation by the password based encryption method. This value should
be set to a long random string.

— rs.crypto.pbe.keylength

The key size used. Keep in mind that key sizes over 128 require the Java Cryptography Extension
(JCE) Unlimited Strength Jurisdiction Policy Files. For more information, see http://www.oracle.
com/technetwork/java/javase/downloads/index.html.

For secure storage of user passwords ReportServer uses the salted HMAC construction.
— rs.crypto.passwordhasher.hmac.passphrase
Defines the static part of the salt for the salted HMAC construction. This value should be set to a

long random string.

Authentication settings

ReportServer supports several methods for user authentication. The different methods can also be
combined.

— rs.authenticator.pams

This parameter defines which authentication methods are to be used. The individual values are
separated by a colon.

Note that the default PAMs usually come in two variants, one being called Authoritative, e.g.
UserPasswordPAMAuthoritative, or LdapPAMAuthoritative. T he difference between the two variants
(the non-authoritative and the authoritative variant) is how they handle the case where they cannot
find the necessary information within the provided list of tokens. The authoritative version then
denies access, while the non-authoritative version opts for letting someone else decide (can't tell,
let another PAM in the list decide). More details on this can be found in the Script Guide.

The following authenticator modules are available
net.datenwerke.rs.authenticator.service.pam.UserPasswordPAM

This is the standard mechanism and allows users to authenticate using a username and password.
Note: with this authentication method username and password are sent to the server in the clear.

2We note that for user passwords only a salted hash is stored. Passwords that need to be recoverable, such as
database passwords, are stored encrypted.

14

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

3.2. reportserver.properties

Thus, this method should only be used over a secure channel (such as TLS/SSL). If you are not in
a secured environment choose the ChallengeResponsePAM instead.

net.datenwerke.rs.authenticator.service.pam.IPRestrictionPAM

With this method you can restrict the set of IP addresses that can access ReportServer. The
allowed address ranges are configured in rs.authenticator.iprestriction.addresses. The
individual values are separated by a colon. Example: rs.authenticator.iprestriction.addressesy
& = 127.0.0.1/32:192.168.1.0/24

net.datenwerke.rs.authenticator.service.pam.EveryoneIsRootPAM
This method will disable authentication and log in all users as root.
net.datenwerke.rs.authenticator.cr.service.pam.ChallengeResponsePAM

This method is similar to the UserPasswordPAM but the password is transmitted securely to the
server. In cases where the connection is not secured via SSL this is the recommended authentication
method. Note though, that this requires the client browser to perform cryptographic tasks which
may be slow on non-up-to-date browsers.

net.datenwerke.rs.authenticator.service.pam.ClientCertificateMatchEmailPAM

If your organization uses x509 certificates, you can use this method to allow users to log in with
their client certificates.

net.datenwerke.rs.ldap.service.ldap.pam.LdapPAM

If your organization uses LDAP and you want to allow LDAP authentication, you can use this method
to allow users to log in with their LDAP credentials. Note that you previously have to import your
LDAP users as described in the Admin Guide: https://reportserver.net/en/guides/admin/
chapters/Integrating-ReportServer-with-an-Active-Directory-using-LDAP/

rs.authenticator.pam.ClientCertificateMatchEmailPAM.debug
This parameter allows to enable debug mode for client certificate authentication.
— rs.authenticator.blockroot

Setting this to true disables direct access using the root user. This is recommended for production
environments. Note that you can switch to the root user using sudo if you need to perform
administrative tasks (and you have the corresponding privileges). Further information on sudo can
be found in the administration guide.

General settings

rs.install.basedata

Setting this to true installs base data if the database is empty, i.e. during a first run. This includes

15

https://reportserver.net/en/guides/admin/chapters/Integrating-ReportServer-with-an-Active-Directory-using-LDAP/
https://reportserver.net/en/guides/admin/chapters/Integrating-ReportServer-with-an-Active-Directory-using-LDAP/

3. External Configuration Files

the audit log and other data.
rs.scripting.disable

If this property is set to true, scripting is completely disabled, so no scripts are run, including the
onlogin and onstartup scripts. Thus, should you find yourself locked out of ReportServer, you can
disable any scripts via this property. Since no scripts will be executed you can then login correctly
to ReportServer.

rs.scheduler.disable

You can completely disable the scheduler by setting this property to true. If the property is set
to true both in reportserver.properties and the analogous property is also set to true in
/fileserver/etc/scheduler/scheduler.cf, the property set in reportserver.properties is
taken into account, while the one set in /fileserver/etc/scheduler/scheduler.cf is ignored.
This allows you to completely avoid running scheduled jobs if you don't have the possibility to log
in and disable the scheduler quickly enough before any jobs are being executed.

16

Chapter 4

Configuration

ReportServer is now up and running. In the following section we describe configuration options
affecting the operation of ReportServer. The present document should be considered as a reference
containing a brief description of the various configuration options. Keep in mind that the settings
described here affect all areas of ReportServer which to describe is beyond the scope of this config
guide. See the administrator’s and user’s guide for further information to the various areas of
ReportServer. Sample configurations can be found in Appendix A.

All configuration files described in this section can be found in ReportServer's internal filesystem.
You can access the internal filesystem using the administration module (administration/ file system)
or using the terminal: you can open the terminal by pressing CTRL+ALT+T.

Tip. Default configuration files are created on first run of ReportServer. Later, when
upgrading ReportServer to a newer version, it is probable that newly added configuration files
will be missing (i.e. all configuration files added between the version originally installed and the
version upgraded to). You can use the “diffconfigfiles” command for getting help on this, check
the Administration Guide for details. Note that default values are used for configuration files
that are not found.

By using the command editTextFile you can edit files directly from the terminal. You can also
create new files using the command createTextFile. For further information on the workings of
the terminal see the administrator’s guide. Using the graphical user interface, you can select files
similar to selecting files when working in the Explorer in your operating system. To do this, go to
administration/file system. To edit a file, choose the tab Edit file. Note that the edit file tab is
only available for text files and if a proper mime-type is specified.

Please note, that after changing a config file you need to run the terminal command config
reload for the change to take effect.

Configuration files in ReportServer are usually defined in an XML format.

19

4. Configuration

4.1 Datasources

In this section we will cover:

how to define the default datasource,

how to define datasource bundles (only available in ReportServer Enterprise),

how to configure the connection pool,

how to configure the internal db

Defining the Default Datasource

ReportServer allows to configure a single default datasource. The default datasource can then be
accessed with only a single mouse click when working with reports and parameters. The default
datasource is set in the file /fileserver/etc/datasources/datasources.cf.

You can use the key of the datasource or use the ID of the datasource for the assignment. Use one
of the two variants for the configuration:

<defaultDatasourceKey>MY_DATASOURCE<defaultDatasourceKey>
<defaultDatasourceld>12</defaultDatasourceld>

Remark. Keep in mind that the datasource key is case sensitive.

Configuring the Connection Pool

By default, ReportServer will pool connections to relational database systems. This increases the
stability of the system, since you can define an upper limit of simultaneously open connections and,
furthermore, it improves the performance at the same time since database connections are kept
open and ready for use.

The connection pools can be configured both globally and per datasource. The configuration is
done in the file /fileserver/etc/datasources/pool.cf.

To not use connection pools, change the attribute “disable” to “true”: <pool disable="false">.

ReportServer uses the library C3P0 (http://www.mchange.com/projects/c3p0/) to perform
connection pooling. To globally set a property, set the property within the <defaultconfig> tags.
For data-source-specific settings, use the tag <pooll6>, where 16 is the ID of the data source.

<?xml version="1.0" encoding="UTF-8"7>
<configuration>
<pool>
<defaultconfig>

<maxPoolSize>40</maxPoolSize>
<initialPoolSize>10</initialPoolSize>
<acquireRetryAttempts>10</acquireRetryAttempts>
<acquireRetryDelay>500</acquireRetryDelay>

20

http://www.mchange.com/projects/c3p0/

4.1. Datasources

<checkoutTimeout>60000</checkoutTimeout>
<maxConnectionAge>7200</maxConnectionAge>
<maxIdleTime>3600</maxIdleTime>

</defaultconfig>

<pooll6>
<acquireRetryAttempts>20</acquireRetryAttempts>

</pooll6>

</pool>
</configuration>

The possible configuration settings of C3P0 can be found at http://www.mchange.com/projects/
c3p0/#configuration_properties. ReportServer simply passes on any set property to C3PO.

Note that as of ReportServer 4.0.0, the current state of the connections (including total max pool
size, busy connections and number of connections) is visualized in the "Connection Pool" System
Console.

Internal database

ReportServer uses a database to buffer data coming from non-database datasources such as, for
example, CSV datasources. This buffer database is called the internal database. Per default
ReportServer uses the its own database for this and creates tables with the prefix rs_ tmptbl . You
can change the database to be used as well as configure certain aspects of the internal database via
the configuration file datasources/internaldb.cf. The default configuration file is

<configuration>
<intermnaldb>
<droponstartup>true</droponstartup>
<datasource>REPORTSERVER_DATASOURCE</datasource>
</internaldb>
</configuration>

The droponstartup tells ReportServer to remove any temporary tables on startup. This should only
be turned off for debugging purposes as having old temporary tables still available after startup will
cause errors when using the internal DB. Via the datasource tag you can define the datasource (via
its key) to be used as the internal database.

SQL limits and parameter options

The datasource parameter (a parameter that can be used to allow the user to select values from a
predefined set) can return a single value or a list of values. If a user selects multiple values (or uses
many filters in a dynamic list) this might lead to problems with certain database systems. This
is due to the fact that the number of values that can be used in IN clauses is limited for most
database systems.

You can specify the maximum number of values that are to be used in an IN clause in the file
/fileserver/etc/datasources/sql.cf. ReportServer will then distribute the selected values
over multiple IN-clauses.

For this set the following parameter

21

http://www.mchange.com/projects/c3p0/#configuration_properties
http://www.mchange.com/projects/c3p0/#configuration_properties

4. Configuration

<incondition>
<maxsize>1000</maxsize>
</incondition>

in accordance with the prerequisites of the used database system.

The datasource parameter

Queries that run for a long time have an impact on the performance of ReportServer. You can
specify how long ReportServer should wait for the results of a parameter query. A parameter query
is executed when a report is opened.

You can specify a timeout for long running parameter queries in the configuration file /fileserver/
etc/datasources/parameter.cf.

Set the parameter <querytimeout>60</querytimeout> to stop queries after 60 seconds.

If you want to use the “post-processing” feature of the datasource parameter enable it using the
following lines:

<postprocessing>
<enable>true</enable>
</postprocessing>

Tip- In general it is good practice to have parameter queries optimized such that they run
very fast such as to provide a good user experience.

The post-processing feature, for example, allows to switch parameter values or perform complex
string operations. Learn more about datasource parameter post-processing in the parameter chapter
in the administrator’s guide.

4.2 Datasinks

Datasinks can be enabled/disabled in the /fileserver/etc/datasinks/datasinks.cf file. Here
you have an entry similar as the following for each supported datasink type:

<configuration>
<sftp disabled="false" supportsScheduling="true" />
<ftp disabled="false" supportsScheduling="true" />
</configuration>

The disabled option controls if the datasink is overall enabled or disabled. Further, scheduling via
datasinks can be enabled or disabled via the supportsScheduling setting. Note that you can not
enable scheduling if the datasink is overall disabled.

Further, you can select a default datasink per type as shown below for email / SMTP datasinks:

<email disabled="false" supportsScheduling="true">
<defaultDatasinkKey>DEFAULT_EMAIL_DATASINK</defaultDatasinkKey>
</email>

22

4.2. Datasinks

Here, your default datasink is the datasink with the key DEFAULT_EMAIL_DATASINK. You can select
the default datasink by key:

<email disabled="false" supportsScheduling="true">
<defaultDatasinkKey>DEFAULT_EMAIL_DATASINK</defaultDatasinkKey>
</email>

or by id:

<email disabled="false" supportsScheduling="true">
<defaultDatasinkId>14</defaultDatasinkId>
</email>

SFTP, FTPS, FTP and SCP Datasinks

Datasinks are supported as of ReportServer 3.4.0. The legacy FTP configuration in
/fileserver/etc/exportfilemd/storage.cf is ignored as of version 3.4.0.

For the SFTP/FTPS/SCP datasinks to work, you have to add your SFTP/FTPS/SCP host to your
.ssh/known_hosts file (https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_
Files#”/.ssh/known_hosts) in order to verify the identity of the remote host, thus protecting

against impersonation or man-in-the-middle attacks. Its location be configured in the /fileserver/etc/security/mis
file as follows.

<?xml version="1.0" encoding="UTF-8"7>

<configuration>
<knownHosts>/path/to/your/machine/.ssh/known_hosts</knownHosts>

</configuration>

For manually adding a public key to the .ssh/known_hosts file, check here: https://en.
wikibooks.org/wiki/OpenSSH/Client_Configuration_Files#Manually_Adding Public_Keys_
to_"/.ssh/known_hosts.

Email SMTP Datasinks

As of ReportServer 3.7.0, the old mail/mail.cf configuration file is deprecated. Instead, Email
SMTP datasinks should be used together with a default email datasink, which can be defined in the
/etc/datasinks/datasinks.cf configuration file as follows.

<email disabled="false" supportsScheduling="true">
<defaultDatasinkName>Default Email Datasink</defaultDatasinkName>

<!-- or access via ID -->
<l-- <defaultDatasinkId>14</defaultDatasinkId> -->
</email>

You can use the name of the datasink, or use the ID of the datasink, for the assignment. Use one
of the two variants above for the configuration.

Note that you can configure a default datasink per datasink type, so this is not limited to email
SMTP datasinks.

23

https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_Files#~/.ssh/known_hosts
https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_Files#~/.ssh/known_hosts
https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_Files#Manually_Adding_Public_Keys_to_~/.ssh/known_hosts
https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_Files#Manually_Adding_Public_Keys_to_~/.ssh/known_hosts
https://en.wikibooks.org/wiki/OpenSSH/Client_Configuration_Files#Manually_Adding_Public_Keys_to_~/.ssh/known_hosts

4. Configuration

4.3 Dynamic Lists

In Dynamic Lists, users can use Computed Columns. Computed columns allow users to extend the
list of columns by fields which do not exist in the source but which can be constructed from existing
fields. Computed Columns are based on SQL.

In /fileserver/etc/dynamiclists/computedcolumn.cf you can specify which SQL functions
can be used with Computed Columns.

Add those functions that may be used by your users.

Example:

<function>abs</function>

Note that SQL functions vary depending on the database system.

We strongly recommend against allowing to use functions that can change data. Further, the
database user used for report execution should not have write access.

Theming

In ReportServer Enterprise Edition you can change how the PDF and HTML output of a dynamic
list is outlined. Further information on this can be found in the Administration Guide.

4.4 Setting up the Scheduler

With ReportServer you can schedule reports and distribute the result either using mail, directly into
a TeamSpace, or sent to any datasink configured, (check Section 4.2 for more details). The next
section discusses some important settings.

Mail Server Configuration

Note that the old /fileserver/etc/mail/mail.cf configuration file is deprecated. Please use email
SMTP datasinks instead together with the default email datasink configuration.

In order for ReportServer to be able to send mails you must specify the mail server settings. Make
the following configurations in your Email SMTP datasink.

Setting up the SMTP server. Replace the values host, port, username, and password according to
your SMTP server.

Host: mail.yourmailserver.com
Port: 25

Username: rs@yourmailserver.com
Password: passwordsecret

SSL: false

TLS enable: false

TLS require: false

24

4.4. Setting up the Scheduler

If you are using SSL or TLS please also specify these values. Next, configure the sender name,
email address and forceSender options. If the forceSender option is set to true, the emails will be
sent using the given (generic) sender details. If set to false, the specific user sending the email will
determine the sender details.

Sender: rs@yourmailserver.com
Sender name: ReportServer
Force sender: false

Encryption policy: allow_mixed

The encryption policy option controls whether or not mails have to be encrypted or whether it is
ok to send mails unencrypted if a user’s public key is not specified. Choose between strict and
allow_mixed. Note that if you choose strict then mails to users that do not have public key
registered with ReportServer will not receive any messages.

Details on setting the default email datasink can be found in Section 4.2.

Scheduler settings

ReportServer comes with a powerful scheduler. ReportServer's scheduler allows you to schedule
the execution of reports. The executed report can then either be emailed, stored in a folder in a
TeamSpace, or sent to any datasource configured. Refer to Section 4.2 Datasinks for more details.

The schedule and report recipients are user provided on scheduling. You can configure the messages
that ReportServer will send out on certain events. Each message can be customized to your
specifications.

ReportServer will send out the following emails:

e email with attached completed report (mailaction) (deprecated, use fileactionEmailDatasink
instead),

e email if a report has been placed into a TeamSpace (fileaction),

e email if a report has been sent to an email SMTP server (fileactionEmailDatasink),
e email if a report has been sent to a table datasink (fileactionTableDatasink),

e email if a report has been sent to a SFTP server (fileactionSftp),

e email if a report has been sent to a FTPS server (fileactionSftp),

e email if a report has been sent to a FTP server (fileactionFtp),

e email if a report has been sent to a Samba - SMB/CIFS server (fileactionSamba),
e email if a report has been sent to a SCP (SSH) server (fileactionScp),

e email if a report has been sent to the local filesystem (fileactionLocalFilesystem),

e email if a report has been sent to a Dropbox datasink (fileactionDropbox),

25

4.

Configuration

The following configurations are done in the file /fileserver/etc/scheduler/scheduler.cf.
To include information such as “the user who created the schedule entry”, “the report’s name” etc.
in your message you can use a variety of expressions. Substitutions are defined in the ReportServer
formula language. You will find further information about the ReportServer formula language in the

email if a report has been sent to a Google Drive datasink (fileactionGoogleDrive),
email if a report has been sent to an Amazon S3 datasink (fileactionAmazonS3),
email if a report has been sent to a Box datasink (fileactionBox),

email if a report has been sent to a Printer datasink (fileactionPrinter),

email if a report has been sent to a Script datasink (fileactionScriptDatasink),
email on schedule (notification - scheduled),

email if a schedule job is revoked (notification - unscheduled),

email if a scheduled job failed (notification - failed)

Administrator’s, as well as in the User Guide.

Available Substitutions

26

Expression Description
${job.getName ()} Job’s name
${job.getDescription()} job’s description
${job.getId O} Job’s ID

${report.getName ()}

report’'s name

${report.getDescription()}

report’s description

${report.report.getKey O}

report's key

${report.getId ()}

report’s ID

${user.getUsername ()}

username

${user.getFirstname ()}

first name of user

${user.getLastname ()}

last name of user

${user.getEmail O}

user's email address

${user.getTitle()} user's title

${user.getId(} id of user

${executor} job’s executor. You can use the same methods above
as with user

${scheduledBy} job’s scheduler. You can use the same methods above

as with user

${teamspace.getName ()}

name of TeamSpace (only available in fileaction)

${folder.getName ()}

name of folder in TeamSpace (only available in fileaction)

${folder} name of folder in FTP server (only available in fileac-
tionFtp)

${message?} the message that was specified by the user on scheduling

${subject} the subject that was specified by the user on scheduling

4.4. Setting up the Scheduler

${recipients} A list of the job recipients. Please check below for the
exact configuration (list of users)

${owners} A list of the job owners. Please check below for the
exact configuration (list of users)

${filename} filename as specified by the user (report is scheduled in
teamspace)

${nextDates} date of next execution

${RS_CURRENT_DATE} current date

${errMsgt error message on erroneous execution

${stacktrace} detailed stacktrace on failed execution

List of users For substitution of a list of users (currently supported: list of job recipients and list
of job owners), you can use a fluent API that allows you to configure the output exactly as you
need. Available methods for this are:

${withSeparator()}

use a given separator between users. Default is a new
line.

${addString(‘,>") }

add a String, e.g. a comma

${addBlankspace (O} | add a blank space

${addNewline ()} add a new line

${addUsernames ()} add usernames

${addFirstnames ()} | add first names

${addLastnames (O} | add last names

${addEmails ()} add emails

${addTitles O} add titles

${addIds (O} user ids

${print O} create the result string. This method has to be called in

the last place.

${recipients

.addFirstnames ()
.addBlankspace ()
.addLastnames ()
.addBlankspace ()
.addString (" (")
.addUsernames ()
.addString(")")
.print O

will print the following:

As mentioned, you can use a fluent API for configuring the output. E.qg.,

27

4. Configuration

Barry Jones (bjones)
Diane Murphy (dmurphy)
Gerard Hernandez (ghernande)

Larry Bott (Ibott)

If you want to separate the users by a comma instead of a new line, you can enter use the
withSeparator () method as follows:

${recipients
.withSeparator (", ")
.addFirstnames ()
.addBlankspace ()
.addLastnames ()
.addBlankspace ()
.addString (" (")
.addUsernames ()
.addString(")")
.print ()

}

which will print the following data:

Barry Jones (bjones), Diane Murphy (dmurphy), Gerard Hernandez (ghernande), Larry Bott (Ibott)

Below you can find some example configurations:

Configuration of email message with attached report (successful execution)

<mailaction html="false">

<subject>${subject}</subject>

<text>Text of message: ${messagel}</text>

<attachment>
<name>rep-${report.getName () }-${RS_CURRENT_DATE}</name>

</attachment>

</mailaction>

Configuration on successful execution of report and storage in TeamSpace

<fileaction disabled="false" html="false">
<subject></subject>
<text></text>

</xmlcode>

Configuration on successful execution of report sent to email SMTP server

<fileactionEmailDatasink disabled="false" html="false">
<subject></subject>
<text></text>

</fileactionEmailDatasink>

Configuration on successful execution of report sent to table datasink

28

4.4. Setting up the Scheduler

<fileactionTableDatasink disabled="false" html="false">
<subject></subject>
<text></text>

</fileactionTableDatasink>

Configuration on successful execution of report and storage in SFTP server

<fileactionSftp disabled="false" html="false">
<subject></subject>
<text></text>

</fileactionSftp>

Configuration on successful execution of report and storage in FTPS server

<fileactionFtps disabled="false" html="false">
<subject></subject>
<text></text>

</fileactionFtps>

Configuration on successful execution of report and storage in FTP server

<fileactionFtp disabled="false" html="false">
<subject></subject>
<text></text>

</fileactionFtp>

Configuration on successful execution of report and storage in Samba server

<fileactionSamba disabled="false" html="false">
<subject></subject>
<text></text>

</fileactionSamba>

Configuration on successful execution of report and storage in SCP (SSH) server

<fileactionScp disabled="false" html="false">
<subject></subject>
<text></text>

</fileactionScp>

Configuration on successful execution of report and storage in the local filesystem

<fileactionLocalFilesystem disabled="false" html="false">
<subject></subject>
<text></text>

</fileactionLocalFilesystem>

Configuration on successful execution of report and storage in Dropbox

<fileactionDropbox disabled="false" html="false">
<subject></subject>
<text></text>

</fileactionDropbox>

Configuration on successful execution of report and storage in OneDrive - SharePoint (O365)

<fileactionOneDrive disabled="false" html="false">
<subject></subject>

29

4. Configuration

<text></text>
</fileactionOneDrive>

Configuration on successful execution of report and storage in Google Drive

<fileactionGoogleDrive disabled="false" html="false">
<subject></subject>
<text></text>

</fileactionGoogleDrive>

Configuration on successful execution of report and storage in Amazon S3 bucket

<fileactionAmazonS3 disabled="false" html="false">
<subject></subject>
<text></text>

</fileactionAmazonS3>

Configuration on successful execution of report and storage in Box

<fileactionBox disabled="false" html="false">
<subject></subject>
<text></text>

</fileactionBox>

Configuration on successful execution of report and storage in Printer datasinks

<fileactionPrinter disabled="false" html="false">
<subject></subject>
<text></text>

</fileactionPrinter>

Configuration on successful execution of report and storage in Script datasinks

<fileactionScriptDatasink disabled="false" html="false">
<subject></subject>
<text></text>

</fileactionScriptDatasink>

Configuration of notifications on scheduling, unscheduling and execution errors

<notification disabled="false" html="false">
<scheduled>
<subject></subject>
<text></text>
</scheduled>
<unscheduled>
<subject></subject>
<text></text>
</unscheduled>
<failed>
<subject></subject>
<text></text>
</failed>
</notification>

30

4.5. Remote RS Server Settings

If you would like to send emails in the HTML format please set the corresponding html attribute to
“true”.

In case you do not want to have one or more notifications, you can disable the individual notifications
using the disabled attribute:

<fileaction disabled="true" html="false">

If you do not want to use the scheduler you can disable it using

<properties>
<disabled>true</disabled>
</properties>

You can also disable the scheduler by setting the following property in your reportserver.properties
file:

rs.scheduler.disable = true

If the property is set both in reportserver.properties andin /fileserver/etc/scheduler/scheduler.cft,
the property set in reportserver.properties Is taken into account, while the one set in
/fileserver/etc/scheduler/scheduler.cf is ignored.

Keep in mind that this changes will only take effect after reboot. To enable or disable the scheduler
while ReportServer is running, use the terminal command scheduler daemon start/stop. This
command only works if the scheduler is not disabled in the file reportserver.properties. If it
is, you first have to delete this property in order to be able to enable/disable the scheduler while
ReportServer is running. Refer to the Administration Guide for more information on this command.

Further, refer to Section 4.12 Scheduler Settings for more scheduler settings.

4.5 Remote RS Server Settings

ReportServer 4.6.0 introduced new “Remote RS Server” objects as explained in the Administration
Guide. Also, new rpull terminal commands were introduced in order to pull/copy remote entities,
e.g. reports from a remote RS installation into the local RS installation, e.g. from PROD to TEST.

In order to be able to import remote reports, their datasources must be able to be mapped to local
datasources. This mapping is defined via the /etc/main/rssync.cf configuration file explained
next.

The default /etc/main/rssync.cf configuration file is shown below:

<?7xml version="1.0" encoding="UTF-8"7>
<configuration>
<mappings>
<datasources>
<priorities>
<priority>mapping</priority>
<priority>same-key</priority>
</priorities>
<key-mappings>

31

4. Configuration

<lP--
<key-mapping>
<remote>REMOTE_KEY_1</remote>
<local>LOCAL_KEY_1</local>
</key-mapping >
<key-mapping>
<remote>REMOTE_KEY_2</remote>
<local>L0OCAL_KEY_2</local>
</key-mapping>
-->
</key-mappings>
</datasources>
</mappings>
</configuration>

The datasource mapping is performed via datasource keys by the key-mapping elements.

For example, the following configuration maps the remote datasource with key MY_REMOTE_DATASOURCE
to the local datasource with key MY_LOCAL_DATASOURCE.

<key-mapping>
<remote>MY_REMOTE_DATASOURCE</remote>
<local>MY_LOCAL_DATASQOURCE</local>
</key-mapping>

The priorities element defines the mapping priorities. There are currently two types of mappings:

e mapping: the explicit mapping defined by the key-mapping elements.

e same-key: implicit mapping of datasources with the same key.

For example, in the following configuration, ReportServer tries first to map the datasources via the
explicit key-mapping elements. If no mapping is found, it tries to find a local datasource with the
same key.

<priorities>
<priority>mapping</priority>
<priority>same-key</priority>
</priorities>

On the contrary, in the following configuration, ReportServer tries first to find a local datasource
with the same key. If no implicit key mapping could be found, it tries to map the datasources via
the explicit key-mapping elements.

<priorities>
<priority>same-key</priority>
<priority>mapping</priority>
</priorities>

32

4.6. Report execution error log settings

4.6 Report execution error log settings

You may configure the exact detailed information your ReportServer should log in case of report

execution failure. This detailed information can be set in the main/error-log.cf configuration
file.

The results are printed in a JSON string for easy result analysis. Note that the order of the properties
is preserved in the result’'s JSON string.

Per default, ReportServer logs the following information:

error a description of the root error causing the failure
report_id the ID of the report

report_name the name of the report

base_report_id the ID of the base report (in case of variants)
base_report_name the name of the base report (in case of variants)
executing_user_id the ID of the user trying to execute the report

report_output_format the output format of the report (e.g. HTML, PDF, etc)

report_uuid the UUID (Universally Unique ldentifier) of the report

Available are the properties discussed below.

Error properties

The following properties allow you to print information of the root error.

error a description of the root error causing the failure

Report properties

The following properties allow you to print information of the report which is failing.

33

4. Configuration

report_id the ID of the report

report_name the name of the report

report_key the key of the report

report_type the type of the report, e.g. TableReportVariant, JasperReport, etc
base_report_id the ID of the base report (in case of variants)

base_report_name the name of the base report (in case of variants)

base_report_key the key of the base report (in case of variants)

base_report_type the type of the base report (in case of variants), e.g. TableReportVariant,

JasperReport, etc
report_output_format the output format of the report (e.g. HTML, PDF, etc)

report_uuid the UUID (Universally Unique ldentifier) of the report

User properties

The following properties allow you to print information of the user trying to execute the report
which is failing.
executing_user_id the ID of the user trying to execute the report
executing_user_username the username of the user trying to execute the report
executing_user_firstname the first name of the user trying to execute the report

executing_user_lastname the last name of the user trying to execute the report

Datasource properties

The following properties allow you to print information of the failing report’s datasource.

datasource_id the ID of the report's datasource

datasource_name the name of the report’s datasource

datasource_path the path of the report’s datasource in the fileserver file system

datasource_type the type of the report’s datasource, e.g. DatabaseDatasource, ScriptDatasource,

etc

In addition to the properties above, you can use the following for DatabaseDatasources (i.e. for
relational databases).

34

4.6. Report execution error log settings

datasource_database_query the report's datasource query. Note that the query is printed
exactly as entered into the datasource’s “query” field, i.e.
no parameter replacement is shown in the output.

datasource_database_information general information of the report’s datasource. This infor-
mation includes the following:

e databaseProductName: the database product, e.g.
“MySQL", “H2", etc.

e databaseProductVersion: the version of the
database, e.g. “8.0.31"

e driverName: the JDBC driver, e.g. "MySQL Con-
nector/J"

e driverVersion: the JDBC driver's version: "mysql-
connector-j-8.0.31"

e JDBCMajorVersion: the JDBC major version of the
driver

e JDBCMinorVersion: the JDBC minor version of the
driver

e URL: the datasource’s complete JDBC URL

e userName: the datasource's JDBC username

datasource_database_jdbc_properties the JDBC properties of the report’s datasource.

General properties

The following properties allow you to print general information of your ReportServer's installation.
Basically, this is the same information you may find in your “General Info” system console.

35

4. Configuration

java_version
java_home
java_vm_arguments
application_server

catalina_home

catalina_home
log_files_directory
rest_url
request_url

request_scheme

request_server_name
request_server_port

request_context_path

request_protocol

config _directory
os_version
reportserver_version
locale

jvm_locale
jvm_user_language
jvm_user_country
jvm_user_timezone
jvm_file_encoding

known_hosts_file

supported_ssl_protocols

default_ssl_protocols
enabled_ssl_protocols
groovy_version

static_pams

36

your exact Java version

environment variable pointing to the your Java installation directory
the Java Virtual Machine arguments

your application server, e.g. “Apache Tomcat/9.0.68"

the root of your application server installation, for example
“/home/tomcat/apache-tomcat-9.0.10" or “C:/Program Files/apache-
tomcat-9.0.10"

the root of a runtime configuration of a specific application server instance
path to the directory where the log files are located

the REST access point

the complete request URL

the name of the scheme used to make the request, for example, “http”,
“https”

the host name of the server to which the request was sent
the port number to which the request was sent

the portion of the request URI that indicates the context of the request.
The context path always comes first in a request URI. The path starts
with a “/" character but does not end with a “/" character. For servlets in

wn

the default (root) context, this method returns .

the name and version of the protocol the request uses in the form proto-
col/majorVersion.minorVersion, for example, “HTTP/1.1"

path to your configured external configuration directory

your operation system, e.g. "Windows Server 2022"

your ReportServer's complete version

your current ReportServer's locale

the locale of your Java Virtual Machine

the language of your Java Virtual Machine user, e.g. “de”

the country of your Java Virtual Machine user, e.g. “DE"

the timezone of your Java Virtual Machine user, e.g. “Europe/Berlin”
the file encoding of your Java Virtual Machine user, e.g. “"UTF-8"
path to your configured known_hosts file

the supported SSL protocols for the current SSL context

the default SSL protocols for the current SSL context

the enabled SSL protocols for the current SSL context

your exact Groovy version

a list of your installed static PAMs (Pluggable Authentication Modules)

4.7. Export settings

Memory properties

The following properties allow you to print information of the current memory settings during the
report’s execution failure. This is basically the same information your meminfo terminal command
prints.

memory_used your current memory usage
memory_free the amount of free memory in the Java Virtual Machine

memory_total the total amount of memory in the Java Virtual Machine. The value returned by this
method may vary over time, depending on the host environment.

memory_max the maximum amount of memory that the Java virtual machine will attempt to use.

4.7 Export settings

Regarding the export to PDF and Microsoft Excel, there are several options that you can set.
In /fileserver/etc/exportfilecmd/excelexport.cf you can specify in which format Excel
documents are to be exported. You can choose between the old XLS and the current XLSX format.
If you have selected the XLSX format, ReportServer allows to stream the data to the client. This
means, that the chunks of resulting Excel file are sent to the user while it is still being created.
Streaming result files can significantly reduce processing time.

To specify the Excel format and whether or not to use streaming, adjust the following parameters:

<format>xlsx</format>
<stream>true</stream>

Further, you can specify the title of the data and configuration sheets in the resulting Excel file by

the following parameters:

<datasheet>Dynamic list</datasheet>
<configsheet>Configuration</configsheet>

Refer to the “output parameters”, “output_filters”, and “output complete configuration” report
parameters in the Admin Guide for more information on this.

You can specify document properties (title, creator and author) of PDF files in the configuration
file /fileserver/etc/exportfilecmd/metadata.cf. The texts specified here will be included in
newly generated PDF files.

Modify the following parameters:

<title>title</title>
<creator>ReportServer</creator>
<author>ReportServer</author>

As with email notifications you can use substitutions to dynamically populate the fields. The
following substitutions are available:

Available Substitutions

37

4. Configuration

Expression Description
${user.getUsername()} | username
${user.getFirstname ()} | user’s first name
${user.getLastname()} | user's last name

${user.getEmail O} user's email address
${user.getTitle O} user's title
${user.getId(O} user's id

You can further specifiy the default character set used by ReportServer. In the configuration file
/fileserver/etc/main/main.cf you will find the option charset. By default, the charset UTF-8
is used.

4.8 Ul Customization

In this section we cover the possibilities of customizing the user interface. ReportServer provides
the following customization options:

Specifying the default language,

Customizing error messages,

Customize the theme,

customize PDF preview,
e customize the report documentation,

add tabs based on context

Further customization options are available with the use of ReportServer scripts. More information
on ReportServer scripts can be found in the Administration Guide.

Specifying the available languages

Any visible text in ReportServer can, in principle, be displayed in any language. The languages avail-
able on log-in can be defined in the configuration file /fileserver/etc/main/localization.cf.

<default>de</default>

The “default” property specifies which language to use as default language.

<locales>en,fr,de</locales>

The “locales” property specifies a comma-separated list of available languages. If the property is not
specified, all supported languages are available for selection.

Remark. The user’s selection is stored in a cookie. Thus, the change of the default locale will
not override any locale settings done by a user previously.

38

4.8. Ul Customization

Remark. A large part of the translations have been generated in a semi-automatic way and
are thus far from perfect. If you are a native speaker in one of the languages and would like to
contribute please contact us at info@infofabrik.de.

Customization of error messages

Errors can occur due to various reasons.

Typical errors are:

e an error occurs on the database during report execution, because:

a table does not exist,

a column does not exist,

there is a syntax error in the underlying SQL,

the JDBC driver was not installed

— etc.

e the connection pool does not have any free connections

An exception is thrown whenever an error occurs in ReportServer. The exception is composed of: a
title, error message, and the stack trace.

In /fileserver/etc/main/templates.cf you can customize the error message that is displayed
on errors that occur during the export of reports.

When customizing the error message you should give clear instructions as to what the affected
employee should do in this case. Usually you would specify the contact address of an administrator
or help desk. When customizing, the following substitutions are available: ${headline}, ${msg}
and ${stacktrace}.

Customization of theming

In ReportServer Enterprise Edition it is possible to customize the theme via the /fileserver/ui/theme.cf
config file. Further information on this can be found in the administration guide.

Preview for PDF reports

In the configuration file /fileserver/etc/ui/previews.cf you can specify how to render PDF
previews. The options are ${native} (to use the native browser capabilities), ${jsviewer} (to use
a javascript library) or ${image} to not render a PDF at all, but to only render the first page as an
image. Also note that users can overwrite the settings within their profiles.

39

mailto:info@infofabrik.de

4. Configuration

Adding contextual tabs

Using the configuration file /fileserver/etc/ui/urlview.cf you can define context aware tabs
to be displayed in the TeamSpace or in the administration module (e.g., report management, user
management, etc.). This allows you to, for example, display the documentation report directly
whenever a user selects a report in the TeamSpace.

The configuration of extra tabs is split into two parts:

<?xml version="1.0" encoding="UTF-8"7>
<configuration>
<adminviews>

</adminviews>
<objectinfo>

</objectinfo>
</configuration>

Tabs to be displayed in the administration module go into the adminviews tags and tabs for the
TeamSpace are put within the objectinfo tags, respectively. The default configuration does not
add any additional tabs for the admin interface, but adds several tabs to the TeamSpace:

<?7xml version="1.0" encoding="UTF-8"7>
<configuration>
<adminviews>
</adminviews>
<objectinfo>
<view>
<types>net.datenwerke.rs.tsreportarea.client.tsreportarea.dto./
, TsDiskReportReferenceDto</types>
<name>${msgs [’net.datenwerke.rs.core.service.urlview.locale.UrlViewMessages’][’/
& info’]}</name>
<url>rs:reportdoc://${reportId}/${id}</url>
</view>
<view>
<types>net.datenwerke.rs.tsreportarea.client.tsreportarea.dto./
 TsDiskReportReferenceDto</types>
<name>${msgs[’net.datenwerke.rs.core.service.urlview.locale.UrlViewMessages’] [’V
& history’l}</name>
<url>rs:revisions://${reportId}</url>
</view>
<view>
<types>net.datenwerke.rs.tsreportarea.client.tsreportarea.dto./
, TsDiskReportReferenceDto</types>
<name>${msgs [’net.datenwerke.rs.core.service.urlview.locale.UrlViewMessages’][’/
s preview’]}</name>
<url>rs:reportpreview://${reportId}</url>
</view>
</objectinfo>
</configuration>

Each <view> tag adds a new tab. The <types> tag allows to define for which types of objects the
tab is displayed and <name> provides a name (in the above example, the name is localized, but you
could also simply write <name>SomeName</name>. Finally, the <url> tag takes a URL that is to
be displayed. In the above example we have three custom ReportServer URLs that access custom
functionality, the first accesses a documentation report, the second a revisions report and the last

40

4.8. Ul Customization

one a preview of the report. Via the replacement ${reportId} the id of the object is added to the
URL.

In the following we go through the process of adding new tabs step by step.

Adding a new Tab

To add a new tab, you define a <view> tag. For adding a tab to the TeamSpace whenever a report
is selected add the following <view> tag within the <objectinfo> section.

<view>
<types>
net.datenwerke.rs.tsreportarea.client.tsreportarea.dto.v”
s TsDiskReportReferenceDto
</types>
<name>Some Additional Information</name>
<url>
reportserver/reportexport?key=someKey& format=html&
& p_reportId=${reportId}
</url>
</view>

The above will execute the report with key “someKey' and pass the given report id as parameter.
The following types are available in TeamSpaces.

All Objects in a TeamSpace:
net.datenwerke.rs.tsreportarea.client.tsreportarea.dto.AbstractTsDiskNodeDto
All folders in a TeamSpace:
net.datenwerke.rs.tsreportarea.client.tsreportarea.dto.TsDiskFolderDto

All reports and variants in a TeamSpace:
net.datenwerke.rs.tsreportarea.client.tsreportarea.dto.TsDiskReportReferenceDto
All exported reports which were, for example, created by the scheduler:

net.datenwerke.rs.scheduleasfile.client.scheduleasfile.dto.ExecutedReportFileReferenceDto/

.

The name field defines the tab’s name. The url is the address that is displayed. This also allows
you to access external addresses, that are then displayed within the tab.

For the report documentation you need to use the special ReportServer URL:
rs:reportdoc://${reportId}/${id}

As you can see there are two placeholders in the above url: ${reportId} and id. The following
replacements are available

41

rs:reportdoc://${reportId}/${id}

4. Configuration

id the object’s id
type the object’s type

username the current user's username

Note that TeamSpaces do not only contain report references. Thus, the replacement ${id} will
contain the id of the reference rather than the id of the referenced report. For this, there is the
special replacement called ${reportId} which is only available for report references.

Similarly, to the report documentation in the TeamSpace you can display additional information
on any selected object in the administration module. In the administration module you can add
tabs to objects in the report management, user management, dadget management, datasource
management and fileserver modules. These are configured within the <adminviews> tag.

The following tables describe which types can be used. Note that the type must be used together
with the corresponding prefix.

Customization of the Login Page

Following is a quick guide for those who want to completely exchange the ReportServer login
page by a custom looking page. In the following we assume that the FileServer contains a folder
/resources/public and that the public folder is marked as “web accessible”. In case not, you can
either mark it with the "web accessible” checkbox in the Ul, or use the following commands:

cd /fileserver/resources
dirmod webaccess public true

As a first step we are going to create a very simple login page, something along the following lines:

<html>
<head>
<title>Custom Login</title>
</head>
<body>
My custom login page
<form method="post" action="">
<label for="user">username:</label>
<input type="text" name="user" />

<label for="pw">password:</label>
<input type="password" name="pw" /></br>
<input type="submit"/>
</form>
</body>
</html>

The page consists of a single form with a username and password field. We store the above as
login.html in the folder /resources/public. For this, for example open the terminal (CTRL+ALT+T)
and go for

cd /fileserver/resources/public
createTextFile login.html

42

4.8. Ul Customization

As the public folder is accessible for anybody (even if the user is not logged in) we can ac-
cess it via the fileServerAccess servlet. That is, if your ReportServer is accessible via the url
reporting.mycompany.com/ then you should see the login page if you go to http://reporting.
mycompany . com/reportserver/fileServerAccess?path=/resources/public/login.html.

Now what was missing in the above login page was the intended target of the form. For this we will
create a publicly accessible script that handles the form data. As scripts always go into the bin
folder we create a folder public beneath the bin folder and add a script customauth.groovy.

cd /fileserver/bin

mkdir public

cd public

createTextFile customauth.groovy
dirmod webaccess public true

To see that everything worked, we use the following simple script which simply outputs the parameter
user:

def user = httpRequest.getParameter (’user’)
return user

Note that you have access to the request and response via the httpRequest and httpResponse
variables. What is left is to change the action attribute of the login.html page to point to
the script, that is, we need to change it to http://reporting.mycompany.com/reportserver/
scriptAccess?path=/bin/public/customauth.groovy.

<html>
<head>
<title>Custom Login</title>
</head>
<body>
My custom login page
<form method="post" action="http://reporting.mycompany.com/~
& ReportServer/reportserver/scriptAccess?path=/bin/public/~
& customauth.groovy">
<label for="user'">username:</label>
<input type="text" name="user" />

<label for="pw">password:</label>
<input type="password" name="pw" /></br>
<input type="submit"/>
</form>
</body>
</html>

The Authentication

What we have so far is that we have a custom login page and a script which is the target. What we
need is that the script can actually perform the login operation if the provided credentials match.
For this we will use the AuthenticatorService located in

net.datenwerke.security.service.authenticator.AuthenticatorService

43

http://reporting.mycompany.com/reportserver/fileServerAccess?path=/resources/public/login.html
http://reporting.mycompany.com/reportserver/fileServerAccess?path=/resources/public/login.html
http://reporting.mycompany.com/reportserver/scriptAccess?path=/bin/public/customauth.groovy
http://reporting.mycompany.com/reportserver/scriptAccess?path=/bin/public/customauth.groovy

4. Configuration

In the following we check for a username root and a password 123. If found we perform a login for
user with id 6 (which in my case is the root user).

import net.datenwerke.security.service.authenticator./
s AuthenticatorService

def service = GLOBALS.getInstance (AuthenticatorService).get()

def user = httpRequest.getParameter (’user’)
def pw = httpRequest.getParameter (’pw’)

if(’root’ == user && ’123’° == pw){
service.setAuthenticated(3) // the id of the root user
httpResponse.sendRedirect (’http://reporting.mycompany.com/ v
s ReportServer/ReportServer.html’);
return null
} else {
return ’Could not authenticate’

3

If all went well you can now logoff and log in via the custom page http://reporting.mycompany.
com/reportserver/fileServerAccess?path=/resources/public/login.html.

Authentication against the ReportServer User Database

In the above example we had a custom script to handle the authentication of a single user. This of
course does not scale well and for any real scenario one would like to authenticate against a user
database. In the following we show how to authenticate against ReportServer's own user database.
For this we can again use the AuthenticatorService which offers a method authenticate that triggers
the built-in authentication mechanisms.

ReportServer's built-in authentication is structured in so called pluggable authentication modules
(short PAM) which perform the actual authentication. The active PAMs are configured in the
reportserver.properties configuration file and usually only a single PAM is active:

rs.authenticator.pams = net.datenwerke.rs.authenticator.service.pam./
 UserPasswordPAMAuthoritative

The above config loads the UserPasswordPAM module in authoritative mode (more information on
the PAMs can be found in the configuration guide). This PAM expects a username and password
and then sets of to authenticate against the ReportServer user database. The authoritative flag
means that if the UserPasswordPAM cannot authenticate a user that it will then trigger an abort.
This can become necessary when you would like to combine multiple different PAMs.

As explained, the AuthenticatorService’s authenticate method triggers the internal authentication
process. That is, it expects an array of so called AuthTokens (which can be basically anything) and
then hands these to the registered PAMs. The PAMs are then asked in turn whether or not they can
authenticate a user. For this they use the AuthToken array. The UserPasswordPAM thus expects a
username and password as an AuthToken. This is encapsulated in the UserPasswordAuthToken
which is located in

net.datenwerke.rs.authenticator.client.login.dto.UserPasswordAuthToken

44

http://reporting.mycompany.com/reportserver/fileServerAccess?path=/resources/public/login.html
http://reporting.mycompany.com/reportserver/fileServerAccess?path=/resources/public/login.html

4.8. Ul Customization

The authenticate method returns an AuthenticationResult which can be asked whether the authen-
tication succeeded (isAllowed()). In the following script we combine our earlier example with an
authentication against ReportServer's user database.

import net.datenwerke.security.service.authenticator./
 AuthenticatorService

import net.datenwerke.security.client.login.AuthToken

import net.datenwerke.rs.authenticator.client.login.dto./
, UserPasswordAuthToken

def service = GLOBALS.getInstance (AuthenticatorService)

def user = httpRequest.getParameter (’user’)
def pw = httpRequest.getParameter (’pw’)

/* construct authentication tokens x*/
def token = new UserPasswordAuthToken ()
token.username = user

token.password = pw

def result = service.authenticate([token] as AuthToken [])

if (result.isAllowed (D){
httpResponse.sendRedirect (’http://reporting.mycompany.com/ v
s ReportServer/ReportServer.html’)
return null

return ’Could not authenticate’

Now your custom login page should be fully functional. The logout part, explained next, should be
customized as well.

Custom Logout

Currently when a user logs out, the user will be taken back to the original ReportServer login page.
In order to change that we need to change the config file located in etc/security/misc.cf within
the ReportServer filesystem. If we add

<logout>
<url>http://reporting.mycompany.com/reportserver/fileServerAccess?/
 path=/resources/public/login.html</url>
</logout>

to the config, then on logout ReportServer will redirect the user to http://reporting.mycompany.
com/reportserver/fileServerAccess?path=/resources/public/login.html.

The complete example can found here: https://github.com/infofabrik/reportserver-samples/
tree/main/src/net/datenwerke/rs/samples/admin/login/simple.

45

http://reporting.mycompany.com/reportserver/fileServerAccess?path=/resources/public/login.html
http://reporting.mycompany.com/reportserver/fileServerAccess?path=/resources/public/login.html
https://github.com/infofabrik/reportserver-samples/tree/main/src/net/datenwerke/rs/samples/admin/login/simple
https://github.com/infofabrik/reportserver-samples/tree/main/src/net/datenwerke/rs/samples/admin/login/simple

4. Configuration

Advanced example

Based on the previous examples, you can used advanced techniques, together with e.g. JQuery:
https://jquery.com/ to further customize your login page. An example of this can be found here:
https://github.com/infofabrik/reportserver-samples/tree/main/src/net/datenwerke/
rs/samples/admin/login/advanced.

Objects in Report Management

Prefix net.datenwerke.rs.core.client.reportmanager.dto.reports.

Type Description
AbstractReportManagerNodeDto | All objects in the report management tree
ReportDto reports

ReportFolderDto folders

Objects in User Management

Prefix net.datenwerke.security.client.usermanager.dto.

Type Description
AbstractUserManagerNodeDto | All objects in the user management tree
UserDto users

GroupDto groups

OrganisationalUnitDto organisational units (folders)

Objects in the file server

Prefix net.datenwerke.rs.fileserver.client.fileserver.dto.

Type Description
AbstractFileServerNodeDto | All objects in the file server
FileServerFolderDto folders

FileServerFileDto files

Objects in Datasource Management

Prefix net.datenwerke.rs.core.client.datasourcemanager.dto.

Type Description
AbstractDatasourceManagerNodeDto | all objects in datasource management
DatasourceFolderDto folders

DatasourceDefinitionDto datasources

Objects in Dadget Management

Prefix net.datenwerke.rs.dashboard.client.dashboard.dto.

46

https://jquery.com/
https://github.com/infofabrik/reportserver-samples/tree/main/src/net/datenwerke/rs/samples/admin/login/advanced
https://github.com/infofabrik/reportserver-samples/tree/main/src/net/datenwerke/rs/samples/admin/login/advanced
net.datenwerke.rs.core.client.reportmanager.dto.reports
net.datenwerke.security.client.usermanager.dto
net.datenwerke.rs.fileserver.client.fileserver.dto
net.datenwerke.rs.core.client.datasourcemanager.dto
net.datenwerke.rs.dashboard.client.dashboard.dto

4.9. Extensions

Type Description
AbstractDashboardManagerNodeDto | All objects in the dashboard tree
DashboardNodeDto dashboards
DashboardFolderDto folders

The following example would display a tab User Information which displays the website at Url
http://www.mycompany.com/employee.

<adminviews>

<view>
<types>net.datenwerke.security.client.usermanager.dto.UserDto<//
& types>

<name>User Information</name>
<url>http://www.mycompany.com/employee=${id}</url>
</view>
</adminviews>

4.9 Extensions

ReportServer has a modular design which is exposed in ReportServer Enterprise Edition to allow for
customization. The extension points are called hooks. Extensions are written in groovy (https:
//groovy-1lang.org/) and can hook into various places in ReportServer. In order to use scripts, you
must configure certain properties in the configuration file /fileserver/etc/scripting/scripting.cf.

This file controls whether scripts are enabled to begin with. Furthermore, you have to specify a
path (in the internal filesystem) beneath which scripts can be placed (this helps to allow users to
create/edit files in the file system without giving them the rights to write scripts). Finally, you can
name a script which is executed on ReportServer startup and one which is executed whenever a
user logs in.

<scripting>
<enable>true</enable>
<restrict>
<location>bin</location>
</restrict>
<startup>
<login>fileserver/bin/onlogin.groovy</login>
<rs>fileserver/bin/onstartup.groovy</rs>
</startup>
</scripting>

In the above example we allow scripts only in the bin folder (and subfolders). We defined the script
fileserver/bin/onlogin.groovy as the script that is executed whenever a user logs in (note
that the script is executed with the current user, that is, the user that logged in and thus the user
must have the rights to execute this script). The second, on startup script is executed without any
user.

The onstartup and onlogin scripts shipped with the ReportServer demo data allow you to easily
execute your own scripts. The onstartup script executes all scripts in the folder /fileserver/bin/

47

http://www.mycompany.com/employee
https://groovy-lang.org/
https://groovy-lang.org/

4. Configuration

onstartup.d. Likewise, the onlogin.groovy script executes all scripts within /fileserver/bin/
onlogin.d.

Further information on ReportServer scripts can be found in the administration guide and the
specialized scripting guide.

4.10 Executing Reports using URLs

You can configure ReportServer to allow other applications to call reports or to include reports
into external websites. For this ReportServer allows to call and configure reports directly using a
specific URL. You can find more information about how reports can be accessed using a URL in the
administrators guide.

The old httpauthexec functionality was replaced in ReportServer 3.0. See the Administration Guide
for further information on how to make reports available via the URL without login.

4.11 Misc Settings

ReportServer needs a directory to store temporary files. You can define the directory to use in
/fileserver/etc/main/main.cf. Furthermore, you can specify a maximum lifetime (in seconds)
of temporary files in the directory.

<tempdir>tempdir</tempdir>
<tempfile>

<lifetime>3600</lifetime>
</tempfile>

Maintenance Tasks

ReportServer performs certain maintenance tasks from time to time. You can define the interval
(in ms) with which ReportServer will execute these.

<maintenance>
<tasks>
<interval>600000</interval>
</tasks>
</maintenance>

ReportServer allows to define a timeout (in ms) for search queries:

<search>
<timeout>5000</timeout>
</search>

4.12 Scheduler Settings

While scheduling new jobs, you can select the option "Compress report” if you want the report to
be compressed in the email sent. Normally, this option is not selected by default. Now you can set
this setting to be selected by default (in /fileserver/etc/main/main.cf):

48

4.13. Localization Settings

<scheduler>
<email>
<defaultcompression>true</defaultcompression>
</email>
</scheduler>

If you set this to true, “Report compression” will be automatically selected when scheduling new
jobs. Defaults to false.

Refer to Section 4.4 Scheduler settings for more scheduler settings.

4.13 Localization Settings
ReportServer contains localization settings in the /fileserver/etc/main/localization.cf file.

You can configure the languages available to your ReportServer users with the following:

<locales>en,fr,de</locales>

In the example above, english, french and german languages are enabled. The default language can
be configured with the following setting:

<default>fr</default>

In the example above, only french will be auto-selected in the ReportServer language list. Note that
for users that previously used ReportServer, the language they used is saved in a cookie for next
time, so the default language setting will not have any effect on these users. You have to delete
your browser's cookies for this.

You can find more information on the available language codes here: https://docs.oracle.com/
en/java/javase/11/docs/api/java.base/java/util/Locale.html.

The country/region (note the uppercase) in which you are using your ReportServer can be configured
as follows:

<region>US</region>

This may be important when using currencies in your reports. For example, if your Jasper reports
are executed using the “DE" (Germany) region code, their currencies will be printed in euro. If they
are executed using the “US” region code, their currencies will be printed in dollars.

You can find more information on the available country/region codes here: https://docs.oracle.
com/en/java/javase/11/docs/api/java.base/java/util/Locale.html.

Formats can be configured in the following:

<format>
<l--
<shortDatePattern></shortDatePattern>
<longDatePattern></longDatePattern>
<shortTimePattern></shortTimePattern>
<longTimePattern></longTimePattern>
<shortDateTimePattern ></shortDateTimePattern >

49

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Locale.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Locale.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Locale.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Locale.html

4. Configuration

<longDateTimePattern></longDateTimePattern>
<numberPattern></numberPattern>
<currencyPattern></currencyPattern>
<integerPattern></integerPattern>
<percentPattern></percentPattern>
-->
</format>

For example, the shortDatePattern and numberPattern may be configured as follows:

<format>
<shortDatePattern>y-MM-dd</shortDatePattern>
<numberPattern># ##0,00</numberPattern>
</format>

Details on the formats available may be found here:

Number Formats http://www.gwtproject.org/javadoc/latest/com/google/gwt/i18n/client/
NumberFormat.html

Date Formats http://www.gwtproject.org/javadoc/latest/com/google/gwt/i18n/client/
DateTimeFormat.html

The currency locales may be configured in the following section:

<currencies>
<currency language="de" region="DE">currencyEuro</currency>
<currency language="en" region="US">currencyDollar</currency>
<currency language="en" region="GB">currencyPound</currency>
<currency language="ar" region="AE">AED</currency>
<currency language="ps" region="AF">AFN</currency>

</currencies>

In the example above, the Euro currency is localized to the de DE locale. If you need to change
this, e.g. to fr_ FR, you may change this to:

<currencies>
<currency language="fr" region="FR">currencyEuro</currency>
<currency language="en" region="US">currencyDollar</currency>
<currency language="en" region="GB">currencyPound</currency>
<currency language="ar" region="AE">AED</currency>
<currency language="ps" region="AF">AFN</currency>

</currencies>

As currency is locale-specific, the format may change depending on the locale configured here.

For example, 123456.79 dollars will be printed as follows in the default locale:

US$123,456.79

50

http://www.gwtproject.org/javadoc/latest/com/google/gwt/i18n/client/NumberFormat.html
http://www.gwtproject.org/javadoc/latest/com/google/gwt/i18n/client/NumberFormat.html
http://www.gwtproject.org/javadoc/latest/com/google/gwt/i18n/client/DateTimeFormat.html
http://www.gwtproject.org/javadoc/latest/com/google/gwt/i18n/client/DateTimeFormat.html

4.14. Security related properties

In en_US locale, the same will be printed as:
$123,456.79

Note that you have to restart ReportServer if you change your currency locale configuration.

More details on currency locales may be found here: http://www.gwtproject.org/javadoc/
latest/com/google/gwt/i18n/client/NumberFormat.html.

4.14 Security related properties
In the following section we describe certain security related configuration options.

In /fileserver/etc/security/misc.cf you can define a blacklist for ReportServer expressions.
If not running ReportServer with a SecurityManager, you should ensure that such expressions cannot
use java reflection. At a minimum level you should deny the phrase getClass. Further information
can be found in the administration and user guides.

<juel>
<expression>
<blacklist>getClass</blacklist>
</expression>
</juel>

In the example the expression getClass is prohibited. Multiple expressions are comma separated.

URL Whitelist

Certain operations, e.g. redirect, are not allowed for external URLs. If you need to allow a URL you
can add it to the whitelist in the /fileserver/etc/security/whitelist.cf configuration file.

<urls>
<url>http://www.host.com</url>
</urls>

Configuring error message level of detail

Further, in this configuration file, you can select the level of detail of error messages shown to the
user. Currently, the following is supported:

hideViolatedSecurityExceptionDetails \When a security rule is violated, e.g. when a user tries to
execute a report the user is not allowed to, specific details of the security violation are being
printed to the user by default. This includes the specific security target, the rights/permissions
being violated, the objects and the method where this happens, if available. This helps
administrators to exactly understand which rights/permissions are needed for a specific object
to be accessed by a user. If not desired, you can set this to false in order to hide these specific
details from the user, which may be preferable in some cases. Defaults to false.

51

http://www.gwtproject.org/javadoc/latest/com/google/gwt/i18n/client/NumberFormat.html
http://www.gwtproject.org/javadoc/latest/com/google/gwt/i18n/client/NumberFormat.html

4. Configuration

Below you can see an example configuration.

<errorMessages >
<hideViolatedSecurityExceptionDetails >false</»
¢ hideViolatedSecurityExceptionDetails>
</errorMessages>

Disabling forgot password

If you wish to disable the “forgot password” option in the login window, you can set the ‘disablelost-
Password” option to true.

Below you can see an example configuration for this.

<disablelLostPassword>true</disablelLostPassword>

Configuring cryptography

The file /fileserver/etc/security/crypto.cf defines various cryptography related options.
The <cryptocredentials> section defines how cryptographic credentials, such as private keys and
certificates are retrieved for various ReportServer modules.

To do so, a provider is specified for each module.

A provider is defined by specifying the name of the handler-class and some additional attributes.

<provider type="signature">

<class>

net.datenwerke.rs.incubator.service.crypto./
& FileServerKeyStoreKryptoCredentialProvider

</class>

<alias>rs</alias>

<secret>secret</secret>

<type>jks</type>

<location>/fileserver/keystore. jks</location>
</provider>

This configures the default handler, which tries to load key-material from a file within the fileserver.
Providers can be specified for these types:

signature: a keystore that holds the private key, ReportServer uses when sending signed emails

user. a keystore that holds public keys and certificates of ReportServer users. This is used, when
sending encrypted emails. An alternate method to provide key material is by using a custom script,
that retrieves the keys e.g. from a corporate directory.

Specifying a Password Policy

ReportServer allows to configure the use of password policies to ensure that users choose secure
passwords. The corresponding configuration goes into the configuration file /fileserver/etc/
security/passwordpolicy.cf.

52

4.14. Security related properties

For example, you can define how long passwords should be and define character classes from which
the password must be built. Furthermore, you can define how often passwords need to be changed
and when a previously chosen password may be chosen again.

<pswd>
<maxage>32</maxage>
<minage>1</minage>
<minlength>8</minlength>
</pswd>

The parameter maxage defines the number of days a password remains valid. The parameter minage
denotes that a password may be changed at most every day. Minlength defines the minimal length
of passwords.

The property <historysize>6</historysize> denotes that the last 6 passwords may not be used
when changing the password.

You can define a threshold on the number of failed login attempts after which a user account is
blocked. This is done using <lockoutthreshold>3</lockoutthreshold>. <lockoutresettimeout>y
& 60</lockoutresettimeout> specifies the time after wich automatically locked accounts can be
used again.

The <characterset> definitions specify which characters for a password are approved and how
many characters from a particular group must be used.

<characterset>0123456789</characterset>
<choosemin>2</choosemin>
<characterset>abcdefghijklmnopqrstuvwxyz</characterset>
<choosemin>1</choosemin>
<characterset>ABCDEFGHIJKLMNOPQRSTUVWXYZ</characterset>
<choosemin>1</choosemin>
<characterset>!$%+"#0@</characterset>
<choosemin>2</choosemin>

In the above example, it is specified that from the first and last group (the digits and special
characters) at least 2 characters must be used. From the two remaining groups at least a single
character must be used.

Note that the specified number denotes a lower bound on the characters chosen from this group.

A complete configuration of the password policy might thus look as follows:

<?xml version="1.0" encoding="UTF-8"7>
<configuration>
<rs>
<security>
<passwordpolicy>
<bsipasswordpolicy>
<pswd>
<maxage>32000</maxage>
<minage>1</minage>
<minlength>8</minlength>
</pswd>
<historysize>6</historysize>
<lockoutthreshold>3</lockoutthreshold>

53

4. Configuration

<lockoutresettimeout>60</lockoutresettimeout>
<characterset>0123456789</characterset>
<choosemin>1</choosemin>
<characterset>abcdefghijklmnopqrstuvwxyz</characterset>
<choosemin>1</choosemin>
<characterset>ABCDEFGHIJKLMNOPQRSTUVWXYZ</characterset>
<choosemin>1</choosemin>
<characterset>!$%&/=7*:.;,-_+"\#0@</characterset>
<choosemin>1</choosemin>
</bsipasswordpolicy>
</passwordpolicy>
</security>
</rs>
</configuration>

Customizing the Logout URL

By default, when a user logs out, the user will be taken back to the original ReportServer login
page. In order to change this, you can change the config file located in etc/security/misc.cf within
the ReportServer filesystem.

An example of this is shown below.

<logout>
<url>http://your-reportserver/ReportServer/reportserver/fileServerAccess?path=//
 resources/public/login.html</url>
</logout>

The example above redirects the user to the given URL instead of the origianl ReportServer login
page.

This is useful when customizing the login page, you can find more details on customizing the login
page on Section 4.4 Customization of the Login Page.

Notifications

Users can be notified when their password has been created the first time or when their password
was changed (by an administrator). The notification is done via email (note that for this the mail
server must be correctly configured). For this purpose, the following configuration file is available:
security/notifications.cf.

This configuration file allows to configure the texts sent by email and further allows to disable this
functionality, if desired.

<createdpassword disabled="false">
<email>
<subject>Email Subject</subject>
<text>Email Text
Username: ${user.getUsername ()}
</text>
</email>
</createdpassword>
<changedpassword disabled="false">
<email>
<subject>Email Subject</subject>

54

4.14. Security related properties

<text>Email Text
Username: ${user.getUsername ()}
</text>
</email>
</changedpassword>

The following substitutions are available.

Expression Description
${user.getUsername ()} | username
${user.getFirstname ()} | user's first name
${user.getLastname ()} | Last name of user

${user.getEmail ()} user's email address
${user.getTitle (O} user’s title
${user.getIdO} user's id

Further, this file allows to configure the texts of the email sent by the listlogfiles terminal
command using the -e option.

<logfiles>
<email>
<subject>Email Subject</subject>
<text>Email Text
Filter: ${filter}
</text>
</email>
</logfiles>

In this section, the following substitutions are available. For more information, check the 1istlogfiles
documentation.

Expression Description

${filter} filter passed with -f parameter
${user.getUsername ()} | username
${user.getFirstname ()} | user’s first name
${user.getlLastname ()} | Last name of user

${user.getEmail O} user's email address
${user.getTitle ()} user's title
${user.getIdO} user's id

Tip. Note that as of RS 3.3.0 the old lostpassword.cf configuration file is no longer available.
This configuration is now done in the new notifications.cf file.

User activation

Users can be activated by administrators using the user manager. On activation, the user will
receive an email with an automatically generated (single use) password (note that for this the mail
server must be correctly configured). After the first login, the user must change the password
according to the password policy.

55

4. Configuration

You can customize the email sent to the user in the configuration file /fileserver/etc/security/
activateuser.cft.

<security>
<activateaccount>
<email>
<subject>Your ReportServer account details</subject>
<text>
Username: ${user.getUsername ()}
Password: ${password}
</text>
</email>
</activateaccount>
</security>

The following substitutions are available.

Expression Description
${user.getUsername ()} | username
${user.getFirstname ()} | user’s first name
${user.getLastname ()} | Last name of user

${user.getEmail O} user's email address

${user.getTitle O} user’s title

${user.getIdO} user’s id

${password} the generated password

${url} the URL under which ReportServer can be accessed

Configuring the SFTP Server

ReportServer Enterprise Edition can be configured to expose its internal filesystem (and other manage-
ment areas) using an SFTP server. The corresponding configuration goes into /fileserver/etc/misc/misc.cf.

<remoteaccess>
<sftp disabled="false">

<!-- Use $generated in order to generate a key on first start.y
G o>
<keylocation>/path/to/hostkey.pem</keylocation>
<port>8022</port>
</sftp>

</remoteaccess>

The SFTP server can be disabled if you don't need it via the disabled property. After a ReportServer
restart, it will not be started if disabled previously.

The file hostkey.pem should contain the server’'s certificate. You can also use $generated
& in order to generate a key on first start. The path should be an absolute path (e.g.,
file:///C:/path/to/hostkey.pem in Windows or /path/to/hostkey.pem in Unix.) Note that
the file:// protocol is necessary in Windows in order to recognize C as the beginning of an absolute
path.

56

4.15. SSO related properties

Note that changes will only take effect after restarting ReportServer. If you do not want to start
the SFTP server simply supply an invalid path or $generated and disable it with disabled.

4.15 SSO related properties

In the following section we describe SSO configuration options.

LDAP

LDAP-related properties, described below, are defined in the /fileserver/etc/sso/1dap.cf con-
figuration file. These are relevant for the “ldapimport” terminal command and the 1dapimport.groovy
script available here: https://github.com/infofabrik/reportserver-samples/blob/main/
src/net/datenwerke/rs/samples/admin/ldap/ldapimport.groovy.

Note that you can (and should) test your LDAP configuration with the 1daptest commands
described in the Administration Guide for checking your LDAP configuration before letting the
real import to happen.

The ldapschema, ldapguid, ldapfilter and ldapinfo terminal commands may also be
useful for exploring your LDAP server and also the extended the 1daptest users, ldaptest
groups and ldaptest organizationalUnits with a -s (schema) flag.

While the -s flag allows you to explore the installed object class types of your users’, OUs' and
groups’ object classes, the 1dapschema allows you to explore any object class.

For example, you may execute 1daptest users -s for printing the schema of the users’ object
class. You should get a list of optional attributes, required attributes, and the parent object
class. Suppose the parent’s object class is “organizationalPerson”. You may then explore this
object class with 1dapschema objectClassInfo organizationalPerson.

You may continue exploring the LDAP schemas until the top-most object class: top.

<disabled>true</disabled>

<provider>
<host>directory.example.com</host>
<port>389</port>

</provider>

The disabled property allows you to completely disable your LDAP if you don't need it. Note that
LDAP is disabled by default.

The provider property configures the host (or IP) and port where your LDAP server is installed.
Note that if you use SSL (LDAPS) this port is different than the LDAP port. StartTLS uses the
same LDAP port.

<security>
<encryption>none</encryption>
<principal>CN=1ldaptest ,CN=Users ,DC=directory ,DC=example ,DC=com<//
& principal>

57

https://github.com/infofabrik/reportserver-samples/blob/main/src/net/datenwerke/rs/samples/admin/ldap/ldapimport.groovy
https://github.com/infofabrik/reportserver-samples/blob/main/src/net/datenwerke/rs/samples/admin/ldap/ldapimport.groovy

4. Configuration

<credentials>password</credentials>
</security>

The encryption property defines the encryption protocol to use. Valid values are none (for no
encryption), starttls (for StartTLS encryption (recommended)) and ss1 (for SSL (LDAPS)
encryption).

In order for encryption to work, you have to install the certificates needed for these to be trusted by
ReportServer.

This means that you must add the LDAP server’s certificate (or a certificate higher up the trust
chain) to a truststore that is known to ReportServer during startup.

This can be achieved in two different ways:

e Passing the truststore where the certificate is installed. If you use JKS keystores you can pass
the keystore analogous to:

-Djavax.net.ssl.trustStore=/path/to/security/truststore.jks
-Djavax.net.ssl.trustStorePassword=my TrustStorePassword
-Djavax.net.ssl.trustStore Type=JKS

If you use PKCS12 you can pass the keystore analogous to:
-Djavax.net.ssl.trustStore=/path/to/security/truststore.p12
-Djavax.net.ssl.trustStorePassword=my TrustStorePassword
-Djavax.net.ssl.trustStore Type=PKCS12

Refer to the Java Documentation for details:

https://docs.oracle.com/en/java/javase/11/security/java-secure-socket-extension-jsse-re
html

Be aware that if you use this method, you may need to add other certificates as well in order
for your Email, SFTP, OneDrive, etc to continue working, as these certificates are contained
in the cacerts truststore, see below. You may of course create a copy of cacerts and add your
certificates to this copy instead of using the java cacerts truststore directly.

e Orinstalling the certificate into your JVM trust store (usually located here java-home/1ib/security/cacert:
Refer to the Java Documentation for details:

https://docs.oracle.com/en/java/javase/11/security/java-secure-socket-extension-jsse-re
html.

You can test your SSL configuration, i.e. if your certificate was installed correctly, with the ssltest
terminal command. Check the Administration Guide for details.

The principal and credentials properties allow you to authenticate to your LDAP server.

<base>0U=EXAMPLE ,DC=directory ,DC=example ,DC=com</base>
<filter>
<V [CDATATC[

58

https://docs.oracle.com/en/java/javase/11/security/java-secure-socket-extension-jsse-reference-guide.html
https://docs.oracle.com/en/java/javase/11/security/java-secure-socket-extension-jsse-reference-guide.html
https://docs.oracle.com/en/java/javase/11/security/java-secure-socket-extension-jsse-reference-guide.html
https://docs.oracle.com/en/java/javase/11/security/java-secure-socket-extension-jsse-reference-guide.html

4.15. SSO related properties

(I (objectClass=organizationalUnit) (objectClass=user) (objectClass=groupy
S o))

11>

</filter>

The base property defines the address of the root object in the LDAP directory. All objects are
stored below the base.

The filter allows you to retrieve a subset of all the nodes found below the base DN.

You can analyze your installed LDAP filter with the 1dapfilter terminal command. You can test
your installed LDAP filter with the 1daptest filter terminal command. Check the Administration
Guide for details on both commands.

<externalDir>/usermanager/external</externalDir>
<writeProtection>true</writeProtection>
<logResultingTree>false</logResultingTree>
<flattenTree>false</flattenTree>

The externalDir property defines the directory in ReportServer where your users/groups and OUs
will be imported into. These objects will be write-protected if the writeProtection is set to true.

When the logResultingTree property is set to true, a summary and some statistics of the changes
done in your ReportServer are logged into your logs.

If you need to import all nodes into the root directory (i.e. into the externalDir directory described
above) instead of using the original LDAP tree, you can set flattenTree to true. Note that all
OUs will be empty in this case. If you don't want to include the empty OUs, you have to remove
them via the filter attribute.

<attributes>

<objectClass>objectClass</objectClass>

<guid>entryUUID</guid>

<organizationalUnit>
<objectClass>organizationalUnit</objectClass>
<name>name</name >

</organizationalUnit>

<group>
<objectClass>group</objectClass>
<name>name</name>
<member>member</member>

</group>

<user>
<objectClass>inetOrgPerson</objectClass>
<firstname>givenName</firstname>
<lastname>sn</lastname>
<username>sAMAccountName</username>
<mail>mail</mail>

</user>

</attributes>

The properties above define the attributes used in your AD nodes. In order to browse and analyze

59

4. Configuration

the LDAP schema of your LDAP installation, you can use the following commands: ldapschema,
ldapinfo, and ldapguid. Check your Administration Guide for details.

General object class attributes are defined by the attributes - objectClass attribute, while
object GUIDs are defined by the guid attribute. Note that GUIDs must be unique. ReportServer
makes a best-effort guess of the appropriate GUID for your installation with the 1dapguid terminal
command. Check your Administration Guide for details.

The organizationalUnit - objectClass definesa OU with name specified by organizationalUnit
- name. [he same applies to the group attributes.

The user attributes specify a given user. The node is determined as a user by the user -
objectClass attribute, while the firstname, lastname, username and mail attributes allow
ReportServer to fetch these attributes from a user node.

<attributes>
<additional>
<attribute>department</attribute>
<attribute>office</attribute>
</additional>
</attributes>

If you need additional attributes, i.e. attributes not included in the standard attribute list, you

can fetch them from your LDAP by defining them in the additional list as shown above.

The example would fetch the department and office attributes, which can be then used in a
LdapNodePostProcessHook hooker as shown in this example: https://github.com/infofabrik/
reportserver-samples/blob/main/src/net/datenwerke/rs/samples/admin/ldap/ldapUserVariableProc
groovy. The example uses the department LDAP attribute in order to set the appropriate value

into a given user-variable myUserVar.

Note that the old allowLocalUsers setting was removed as of ReportServer 4.5.0. Instead,
you should use colon-separated PAMSs in your reportserver.properties as explained in the
Script Guide (Custom Authenticators PAMs) if you need to allow/disallow local users to log-in.

E.g. the following setting allows only LDAP users:
rs.authenticator.pams = net.datenwerke.rs.ldap.service.ldap.pam.LdapPAM
while the following setting allows both LDAP and local users:

rs.authenticator.pams = net.datenwerke.rs.ldap.service.ldap.pam.LdapPAM:net.datenwerke.rs.:

60

https://github.com/infofabrik/reportserver-samples/blob/main/src/net/datenwerke/rs/samples/admin/ldap/ldapUserVariableProcessorHooker.groovy
https://github.com/infofabrik/reportserver-samples/blob/main/src/net/datenwerke/rs/samples/admin/ldap/ldapUserVariableProcessorHooker.groovy
https://github.com/infofabrik/reportserver-samples/blob/main/src/net/datenwerke/rs/samples/admin/ldap/ldapUserVariableProcessorHooker.groovy

Chapter 5

External Configdir

ReportServer provides an alternative mechanism for providing configuration called the configdir
mechanism. This allows to keep system settings separate from application files. You can use the
config dir to

e store hibernate connection properties

e override reportserver.properties values

e move the config files from the internal fileserver to you local filesysystem
e import contents into the internal fileserver

e hold additional jars (for example, additional JDBC drivers)

e override logging-rs.properties

To make ReportServer use the configdir you have to set the rs.configdir system property, for example
by specifying the

-Drs.configdir=/var/lib/rsconfig

command line switch.

hibernate connection properties

To use the configdir to specify hibernate connection properties, place a file with the name persis-
tence.properties in the config dir. The file has the standard java properties file format. The properties
defined here overwrite the properties configured in the persistence.xml file in the application directory.

For example you could create a persistence.properties file with these contents

hibernate.connection.url=jdbc:mysql://localhost:3306/reportserver
hibernate.connection.username=root
hibernate.connection.password=root

to provide the base connection parameters for ReportServer to use.

63

5. External Configdir

reportserver.properties values

You can override the values defined in the reportserver.properties file in the application directory by
creating a second reportserver.properties file in the configdir. Settings from this file will override
settings made in the default reportserver.properties file.

additional jars

The lib directory can hold additional jars (for example, additional JDBC drivers). This allows you,
in particular, to maintain a set of libraries that will not be overwritten during your next reportserver
upgrade.

logging-rs.properties values

You can override the values defined in the logging-rs.properties file in the application directory by
creating a second logging-rs.properties file in the configdir. Settings from this file will override
settings made in the default logging-rs.properties file.

xml configfiles

You can use the configdir to replace the internal fileserver storage for ReportServer xml configuration
files. To use this feature create a config subdirectory in the configdir and place the config files there
using the same directory layout as in the fileserver/etc directory. For example to store terminal
aliases outside the internal fileserver create a file {rs.configdir}/config/terminal/alias.cf.
You can use the baseconfig zip file in the pkg subdirectory of you ReportServer download to quickly
create the correct directory structure. If a configfile is present in the internal fileserver, the same
file on the local filesystem will be ignored, ReportServer will not try to merge the two files. However
you can have some config files in the fileserver and others in the configdir.

fileserver import

If you create a fsimport subdirectory in the configdir folder ReportServer will copy its contents to
its internal fileserver on startup. This will update/override existing files, however missing files will
not be removed.

Creating the configdir directory

In the Linux https://reportserver.net/en/tutorials/installation-best-practice/ and
Windows https://reportserver.net/en/tutorials/installation-windows/ Best-Practice
Guides you can find examples of how to create the configdir and what files and directories to include
in it.

64

https://reportserver.net/en/tutorials/installation-best-practice/
https://reportserver.net/en/tutorials/installation-windows/

Appendix A

Config File Reference

In our github rs-samples repository you can find the defaults for each configuration file: https:
//github.com/infofabrik/reportserver-samples/tree/main/config

67

https://github.com/infofabrik/reportserver-samples/tree/main/config
https://github.com/infofabrik/reportserver-samples/tree/main/config

	Contents
	1 Preamble
	2 Installation
	2.1 Automatic Installation
	2.2 Manual Installation
	2.3 Running ReportServer on JBoss Wildfly
	2.4 Installing the Demo Data

	3 External Configuration Files
	3.1 persistence.properties
	3.2 reportserver.properties

	4 Configuration
	4.1 Datasources
	4.2 Datasinks
	4.3 Dynamic Lists
	4.4 Setting up the Scheduler
	4.5 Remote RS Server Settings
	4.6 Report execution error log settings
	4.7 Export settings
	4.8 UI Customization
	4.9 Extensions
	4.10 Executing Reports using URLs
	4.11 Misc Settings
	4.12 Scheduler Settings
	4.13 Localization Settings
	4.14 Security related properties
	4.15 SSO related properties

	5 External Configdir
	A Config File Reference

